Short course in Molecular Biology (2013/2014)

Course Not running, not visible

Course code
4S001515
Name of lecturer
Massimiliano Perduca
Coordinator
Massimiliano Perduca
Number of ECTS credits allocated
6
Academic sector
BIO/11 - MOLECULAR BIOLOGY
Language of instruction
Italian
Period
I semestre dal Oct 1, 2013 al Jan 31, 2014.

Lesson timetable

Learning outcomes

The aim of this course is to give the students the basic knowledge of the molecular mechanisms concerning transmission, variation and expression of the genetic information.

Syllabus

-> Genetic information and informational molecules
General introduction and historical hints. The chemical structure of DNA and RNA. Three dimensional structure of DNA. Physico-chemical properties of DNA.
-> DNA, RNA and gene structure
Definition of gene coding and regulatory regions. From genes to proteins; messenger RNA, transfer RNA and ribosomal RNA.
-> Genome organization and evolution
DNA content and number of genes. Mutations, DNA rearrangement and genome evolution. The organelle genomes. Interrupted genes; introns. cDNA. Gene families and duplication. DNA repeats.
-> Transposable elements
Transposition mechanisms and control. Retroviruses and retrotransposones. Transposons.
-> Chromatin and chromosomes
Nucleosomes, histones and their modifications. Higher organization levels of chromatin. Heterochromatin and euchromatin. Eukaryotic chromosomes, telomeres and centromeres.
-> DNA replication
DNA polymerases. Proofreading activity of DNA polymerases. Replication mechanism in bacteria and eukaryotic cells.
-> Introns and RNA splicing
Features of spliceosomal introns. Spliceosome and splicing mechanism. Alternative splicing and trans-splicing. Other kinds of introns: group I and group II introns and tRNA introns. The intron movement. RNA editing. Ribozymes and riboswitch.
-> DNA mutation and repair
Spontaneous mutations and mutations caused by physical and chemical mutagens. Pre- and post-replicative repair systems. Recombination in the immunity system cells. Approaches to homologous recombination.
-> Regulation of gene expression
Bacterial promoters. The operon. Activators, repressors and coactivators. Signal transductions and two component regulation systems. Eukaryotic promoters. Activators, repressors and coactivators. Gene expression and chromatin modifications. Epigenetic mechanisms.
-> RNAs and transcription
Different types of RNA: synthesis and maturation. Bacterial RNA polymerase. Sigma factors. Eukaryotic RNA polymerases. Eukaryotic mRNAs: capping, polyadenylation, cytoplasmic localization. The transcription process in bacteria and in eukaryotic cells.
-> Translation
Ribosomes. tRNA structure and function. Aminoacyl-tRNA synthesis. Initiation in bacteria and eukaryotic cells. Polypeptide chain synthesis and translation end. Regulation of translation.
-> Protein localization.

Reference books
Author Title Publisher Year ISBN Note
Watson JD et al. Biologia molecolare del gene Zanichelli 2005 88-08-1789
Nancy L. Craig, Orna Cohen-Fix, Rachel Green, Carol W. Greider, Gisela Storz, Cynthia Wolberger Biologia molecolare Principi di funzionamento del genoma (Edizione 1) Pearson 2013 9788871928111
Lewin B. Genes VIII Pearson Education international 2004
Harvey Lodish, Chris A. Kaiser, Anthony Bretscher, Angelika Amon, Arnold Berk, Monty Krieger, Hidde Ploegh and Matthew P. Scott Molecular Cell Biology (Edizione 7) Freeman 2012 1464102325
Alberts et al. The Cell Garland Science  

Assessment methods and criteria

Oral examination.

Share