Pubblicazioni

Lignocellulolytic Potential of Microbial Consortia Isolated from a Local Biogas Plant: The Case of Thermostable Xylanases Secreted by Mesophilic Bacteria  (2024)

Autori:
Bombardi, Luca; Salini, Andrea; Aulitto, Martina; Zuliani, Luca; Andreolli, Marco; Bordoli, Paola; Coltro, Annalaura; Vitulo, Nicola; Zaccone, Claudio; Lampis, Silvia; Fusco, Salvatore
Titolo:
Lignocellulolytic Potential of Microbial Consortia Isolated from a Local Biogas Plant: The Case of Thermostable Xylanases Secreted by Mesophilic Bacteria
Anno:
2024
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Formato:
Elettronico
Referee:
Nome rivista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN Rivista:
1422-0067
N° Volume:
25
Numero o Fascicolo:
2
Intervallo pagine:
1-28
Parole chiave:
biomass conversion; biorefineries; carbohydrate-active enzymes; metagenomic analyses; microbial diversity; microbiome dynamics; microbiomes; spent mushroom substrate; thermal analysis; total carbohydrate analysis
Breve descrizione dei contenuti:
Lignocellulose biomasses (LCB), including spent mushroom substrate (SMS), pose environmental challenges if not properly managed. At the same time, these renewable resources hold immense potential for biofuel and chemicals production. With the mushroom market growth expected to amplify SMS quantities, repurposing or disposal strategies are critical. This study explores the use of SMS for cultivating microbial communities to produce carbohydrate-active enzymes (CAZymes). Addressing a research gap in using anaerobic digesters for enriching microbiomes feeding on SMS, this study investigates microbial diversity and secreted CAZymes under varied temperatures (37 °C, 50 °C, and 70 °C) and substrates (SMS as well as pure carboxymethylcellulose, and xylan). Enriched microbiomes demonstrated temperature-dependent preferences for cellulose, hemicellulose, and lignin degradation, supported by thermal and elemental analyses. Enzyme assays confirmed lignocellulolytic enzyme secretion correlating with substrate degradation trends. Notably, thermogravimetric analysis (TGA), coupled with differential scanning calorimetry (TGA-DSC), emerged as a rapid approach for saccharification potential determination of LCB. Microbiomes isolated at mesophilic temperature secreted thermophilic hemicellulases exhibiting robust stability and superior enzymatic activity compared to commercial enzymes, aligning with biorefinery conditions. PCR-DGGE and metagenomic analyses showcased dynamic shifts in microbiome composition and functional potential based on environmental conditions, impacting CAZyme abundance and diversity. The meta-functional analysis emphasised the role of CAZymes in biomass transformation, indicating microbial strategies for lignocellulose degradation. Temperature and substrate specificity influenced the degradative potential, highlighting the complexity of environmental-microbial interactions. This study demonstrates a temperature-driven microbial selection for lignocellulose degradation, unveiling thermophilic xylanases with industrial promise. Insights gained contribute to optimizing enzyme production and formulating efficient biomass conversion strategies. Understanding microbial consortia responses to temperature and substrate variations elucidates bioconversion dynamics, emphasizing tailored strategies for harnessing their biotechnological potential.
Pagina Web:
https://doi.org/10.3390/ijms25021090
Id prodotto:
137479
Handle IRIS:
11562/1118366
ultima modifica:
22 ottobre 2024
Citazione bibliografica:
Bombardi, Luca; Salini, Andrea; Aulitto, Martina; Zuliani, Luca; Andreolli, Marco; Bordoli, Paola; Coltro, Annalaura; Vitulo, Nicola; Zaccone, Claudio; Lampis, Silvia; Fusco, Salvatore, Lignocellulolytic Potential of Microbial Consortia Isolated from a Local Biogas Plant: The Case of Thermostable Xylanases Secreted by Mesophilic Bacteria «INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES» , vol. 25 , n. 22024pp. 1-28

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro

Attività

Strutture

Condividi