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RIASSUNTO:

Il progetto di dottorato ¢ stato condotto nel laboratorio di Metodologie Biochimiche del
Dipartimento Scientifico e Tecnologico dell’Universita di Verona. Per la stesura di tale progetto
sono state instaurate delle collaborazioni con alcuni laboratori: in particolare si ¢ collaborato con il
laboratorio di Molecular Medicine del Centro Ricerche GlaxoSmithKline (GSK) di Verona, per la
parte del progetto riguardante 'alchilazione differenziale con acrilamide deuterata, lo studio della
dipendenza da nicotina e I’analisi proteomica dei cambiamenti molecolari indotti dall’antidepressivo
fluoxetina. Si ¢ collaborato inoltre con 1 Dipartimenti di Patologia e di Scienze Neurologiche e della
Visione dell’'Universita di Verona per lo studio riguardante I’analisi degli eventi epigenetici coinvolti
nell’adenocarcinoma pancreatico. La collaborazione con il Laboratorio di Mass Spectrometry del
Centro Ricerche (GSK) di Verona ha permesso la parte di identificazione proteica delle analisi
sopra-indicate; mentre lo sviluppo di nuovi metodi statistici per I’analisi dei profili proteici ¢ stato
possibile grazie alla collaborazione con il Dipartimento di Scienze e Tecnologie Avanzate
dell’Universita del Piemonte Orientale ed il Dipartimento di Chimica e Tecnologie Farmaceutiche e
Alimentari dell’'Universita di Genova.

Gli obiettivi di questo progetto di dottorato sono stati:

1) lo sviluppo di metodi innovativi per I'analisi proteomica comparativa tramite elettroforesi
bidimensionale (2DE);

2) l'applicazione dei metodi sviluppati e soprattutto dei metodi classici della proteomica comparativa,
per Panalisi degli eventi epigenetici coinvolti nell’adenocarcinoma pancreatico, per lo studio della

dipendenza da nicotina e degli eventi molecolari indotti dall’antidepressivo fluoxetina.

Per quanto riguarda il primo obiettivo del progetto di dottorato, si ¢ proceduto con lo sviluppo di un
nuovo metodo semplice ed economicamente competitivo, (rispetto alle tecnologie attualmente
presenti in commercio, quali ICAT, MCAT), per la determinazione delle quantita relative delle
proteine separate tramite elettroforesi bidimensionali. I metodo sviluppato si basa sull’alhilazione
differenziale delle due miscele proteiche da confrontare tramite l'utilizzo di acrilammide deuterata e
non (d, e d;). Le due miscele, mescolate in rapporto 1:1, sono separate sulla stessa mappa 2D e le
macchie proteiche vengono quindi analizzate e quantificate tramite spettrometria di massa. I risultati
ottenuti per una miscela di proteine standards e per un campione reale (quale il siero di ratto) hanno

dimostrato che il metodo sviluppato risulta essere uno strumento semplice ed efficace da poter
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applicare per l'analisi proteomica comparativa. Il vantaggio offerto da questa tecnica rispetto ai
metodi gia esistenti, basati sulla separazione tramite LC/MS-MS, dipende dal fatto che vengono
mantenute le caratteristiche positive di una separazione elettroforetica bidimensionale 2DE (cio¢
visualizzazione del profilo proteico generale e di eventuali modificazioni post-trascrizionali, nonché
la possibilita di analizzare tramite la MS le proteine intere). Inoltre in uno studio condotto da Cahill
et al. (Rapid Commun. Mass Spectrom., 2003, 17, 1283-1290), successivamente alla pubblicazione del
nostro metodo, ¢ stato dimostrato che la diversa composizione isotopica delle acrilammidi da noi
utilizzate (d, e d;) non influenza la resa di alchilazione e nemmeno la corsa elettroforetica delle
proteine. Risulta quindi prevedibile che il metodo di alchilazione differenziale messo a punto potra
trovare ampia applicazione nei laboratori di analisi proteomica differenziale: in uno studio eseguito
da Turko e Murad (The J. Biol Chem., 2003, 278, 35844-35849), per esempio, il metodo ¢ stato
applicato per analizzare la variazione dell’espressione proteica in un modello di diabete ottenuto
sperimentalmente con streptozotocina.

Sempre allo scopo di migliorare i metodi attualmente disponibili per I'analisi comparativa delle
mappe bidimensionali si ¢ proceduto, durante il progetto di dottorato, con 'implementazione di
nuovi metodi statistici per il confronto e I'analisi dei profili proteici. Per ovviare all'inconveniente di
scarsa riproducibilita delle mappe bidimensionali ¢ stata applicata la /logica fuzzy per la loro analisi. La
logica fuzzy si basa sull'insieme fuzzy, cio¢ un insieme di oggetti nel quale non c'e¢ un confine ben
preciso o definito tra gli oggetti che vi appartengono e quelli che non vi appartengono. Il concetto
chiave che sta alla base di tale definizione ¢ quello di appartenenza: ad ogni elemento di un insieme ¢
associato un valore che indica il grado di appartenenza di tale elemento all'insieme. Questo valore ¢
compreso nell'intervallo [0, 1], dove 0 e 1 indicano rispettivamente il nullo ed il massimo grado di
appartenenza, mentre tutti 1 valori intermedi indicano delle appartenenze "parziali". Suddividendo la
mappa bidimensionale in una griglia, si puo indicare con 1 o 0 I'appartenenza o meno di una
macchia proteica in una determinata zona della griglia. I risultati ottenuti tramite 'applicazione della
logica fuzzy hanno dimostrato che ¢ possibile suddividere correttamente 10 diverse mappe
bidimensionali nei due gruppi sperimentali di appartenenza (campioni controllo e campioni trattati).
Un ulteriore nuovo strumento statistico per la proteomica comparativa, sviluppato in questo
progetto di dottorato, ¢ [analisi dei componenti principali 3-way (PCA). Tale strumento statistico ¢ stato
applicato allo studio di 10 diverse mappe bidimensionali di campioni di siero di ratto (5 di controllo
e 5 trattati con nicotina). Il principale vantaggio offerto dall’analisi dei componenti principali 3-way

(PCA) dipende dal fatto che, a differenza dei programmi di elaborazione attualmente disponibili
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(quali PDQuest, Melanie, etc...), non viene richiesto I'intervento dell’operatore per l'allineamento ed
il confronto delle mappe. I risultati ottenuti hanno dimostrato che I’analisi con PCA ¢ un buon
metodo per classificare correttamente le mappe 2D nei reali gruppi sperimentali e permette inoltre di
individuare le zone delle mappe (e quindi le macchie proteiche) responsabili delle differenze tra i due

gruppi in analisi.

Procedendo quindi con il secondo obiettivo del progetto di dottorato, alcuni dei metodi sviluppati
(sopra-descritti) e soprattutto i metodi classici della proteomica comparativa, sono stati applicati per
Vanalisi degli eventi epigenetici coinvolti nell'adenocarcinoma pancreatico. 1 primi stadi nello sviluppo di un
tumore coinvolgono molti cambiamenti molecolari, tra i quali le variazioni epigenetiche. Tali eventi,
a differenza delle variazioni genetiche (come le mutazioni), possono essere soppressi dall’azione
farmacologia di particolari sostanze antitumorali. Con lo scopo di studiare la deacetilazione degli
istoni e la metilazione del DNA, quali principali eventi epigenetici coinvolti nell’adenocarcinoma
pancreatico, abbiamo analizzato la variazione nell’espressione proteica di una linea cellulare (di
adenocarcinoma pancreatico) trattata con tricostatina-A, (TSA) (inibitore della deacetilazione degli
istoni) e, successivamente, con decitabina (DAC) (inibitore della metilazone del DNA). I’analisi
proteomica differenziale classica, effettuata tramite confronto delle repliche delle mappe 2D con il
software PDQuest, ha permesso di individuare 51 diverse macchie proteiche, che risultano avere una
variazione nella loro espressione in seguito al trattamento delle cellule con tricostatina-A. I risultati
ottenuti tramite I’analisi proteomica differenziale classica, abbinata allidentificazione proteica con
MALDI-TOF, hanno permesso di migliorare la comprensione degli effetti del trattamento con il
farmaco antitumorale TSA e dell’evento epigenetico connesso. Ad esempio, la nucleofosmina e la
proteina tumorale trascrizionalmente regolata, (coinvolte rispettivamente nell’oncogenesi e nel
processo di reversione del tumore), risultano essere sotto-espresse, mentre la proteina di morte
cellulare programmata e la statmina, (coinvolte rispettivamente nell’apoptosi e nel blocco del ciclo
cellulare), risultano essere sovra-espresse dopo trattamento con TSA, in perfetto accordo con gli
effetti farmacologici di tale sostanza anti-tumorale.

Per verificare la veridicita dei risultati ottenuti dal confronto dei profili proteici effettuato con il
PDQuest, si ¢ proceduto con l'applicazione dell’analisi dei componenti principali (PCA). I dati
ricavati da tale metodo statistico non solo erano in ottimo accordo con quelli derivati dall’analisi al

PDQuest ma, essendo la PCA un metodo statistico robusto, hanno ache permesso di individuare
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variazioni nell’espressione proteica inferiori al livello di soglia del 100%, tipico dell’analisi al
PDQuest.

Si ¢ proceduto quindi con 'analisi proteomica classica dei campioni cellulari trattati con decitabina,
allo scopo di individuare gli effetti molecolari di tale trattamento anti-tumorale: un totale di 45
diverse macchie proteiche sono risultate essere diversamente espresse. Tra le 36 proteine identificate,
tramite analisi MALDI-TOF, alcune sono note in letteratura come marcatori del carcinoma epatico,
altre sono coinvolte nell’apoptosi, altre ancora sono chaperoni molecolari, mentre una proteina (la
super ossido dismutasi) ¢ un soppressore del tumore, la cui trascrizione viene riattivata in seguito al
trattamento con DAC. I risultati ottenuti da tale analisi possono contribuire a migliorare la
comprensione del meccanismo coinvolto nella risposta al trattamento con I'antitumorale decitabina.
Il progetto di dottorato si ¢ sviluppato poi con Vanalisi dei cambiamenti proteomici nel siero di ratto dopo
trattamento cronico con nicotina. 11 meccanismo d’azione della nicotina non ¢ stato ancora del tutto
chiarito né a livello del sistema nervoso centrale, né a livello periferico; soprattutto a livello periferico
timane ancora molto da chiarire. E noto ad esempio che la nicotina agisce sulla tachicardia, sulla
vasocostrizione, sulla motilita intestinale, inoltre ha effetti aterogenici se somministrata in modo
acuto ed agisce sul sistema immunitario. I risultati ottenuti dall’analisi proteomica dei campioni di
siero di ratti, trattati con nicotina, confermano le proprieta anti-inflammatorie di tale sostanza ed un
coinvolgimento nella risposta di fase acuta e nello stress ossidativo. Questi effetti osservati a livello
periferico nel siero, possono derivare dall'interazione diretta della nicotina con i recettori specifici
neuronali e periferici o direttamente dalle proprieta chimiche-farmacologiche della nicotina stessa.

Si sono valutati infine gli effesti molecolari del trattamento con 'antidepressivo fluoxetina su colture primarie di
neuroni corticali. Anche per tale sostanza il meccanismo d’azione rimane ancora da chiarire: ¢ noto
infatti che Tantidepressivo fluoxetina agisce come inibitore selettivo della ricaptazione della
serotonina, tuttavia gli effetti farmacologici della sostanza sono evidenziabili solo dopo alcune
settimane di trattamento, benché vi sia un innalzamento immediato det livelli sinaptici di serotonina;
¢ ipotizzabile quindi un meccanismo d’azione indipendente dalla trasmissione serotoninergica
Abbiamo utilizzato un approccio di analisi proteomica comparativa con lo scopo di migliorare la
comprensione del meccanismo d’azione della fluoxetina ed i risultati ottenuti ¢i hanno permesso di
stabilire che tale antidepressivo altera I'espressione di proteine coinvolte nel trasporto assonale,
nell’assemblamento sinaptico delle vescicole e nella neuroprotezione. Tali risultati, in accordo con la
letteratura gia esistente, oltre a chiarire il meccanismo d’azione della fluoxetina, possono suggerire

nuovi bersagli per lo sviluppo di strategie addizionali per il trattamento della depressione.
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Concludendo, tutti gli studi di analisi proteomica comparativa, effettuati durante questo progetto di
dottorato, confermano che Pelettroforesi bidimensionale, accoppiata all’analisi tramite spettrometria
di massa, ¢ una tecnica efficace per I'analisi globale della variazione dell’espressione proteica, per
I'individuazione di marcatori molecolari di malattie nonché di bersagli per nuove strategie
terapeutiche. I.’analisi proteomica comparativa effettuata con 2DE, pur essendo una tecnica robusta,
ormai consolidata, offre comunque la possibilita di introdurre ancora miglioramenti, riguardanti non
solo la derivatizzazione differenziale dei campioni, o I'analisi statistica dei profili 2D, ma anche altri
aspetti dell’analisi bidimensionale (dalla riproducibilita delle mappe 2D, fino alle banche dati

proteiche).
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PREFACE:

Conventional protein analyses, based primarily on immunological methods, have been successfully
used for studying proteins for many years. However, these methods can be used for characterizing
only a small number of proteins in replicates of single experiments and are frequently limited by the
availability of specific antibodies to proteins. Profeomics 1s an emerging area of science that attempts to
study proteins on a massively parallel scale. The field of proteomics is relatively new as demonstrated
by the fact that Marc Wilkins first introduced the term proteome (set of PROTEIins expressed by the
genOME)) to the public as recently as in 1994. Quantitative and qualitative proteomic analyses can be
performed using various gel-based and gel-free methods. In general, mass spectrometry is used to
identify the proteins by either direct sequence analysis or pattern matching of peptide fragments.
Using state-of-the-art proteomic techniques, a large number of proteins can be studied at once and
analyses of thousands of proteins can be completed within a few months. The application of
proteomic approaches is growing rapidly as demonstrated by the increasing number of published
articles that use proteomic techniques. Proteomic technologies are thus applied to plants, micro
organisms, food, animal and human samples analysis. Concerning this last field, proteomics is
became a key technology in many biomedical studies, including molecular medicine, drug discovery
and clinical diagnostic. All these different applications and the related problems to be solved, make
proteomics a technology that may be improved.

The objectives of the present thesis work are:

1) the development of new tools for comparative proteomics analysis,

2) the biomedical application of classical proteomic analysis, and some of the new developed tools,
for analyzing epigenetic events in pancreatic cancer, biochemical pathways involved in nicotine
dependence and molecular events induced by the antidepressant fluoxetine treatment.

The thesis work was conduced at the Proteomics laboratory of the Scientific and Technologic
Department of the University of Verona, in collaboration with other laboratories: the Molecular
Medicine Unit at the Psychiatric Centre of Excellence in Drug Discovery of GlaxoSmithKline
(GSK) S.p.A. in Verona, for the development of a new isotopically marked alkylating agent, the
nicotine dependence analysis and the proteomic study of fluoxetine-induced molecular changes. The
proteomic analysis of epigenetic events involved in pancreatic cancer was performed in collaboration
with the Department of Pathology, Section of Anatomical Pathology, and the Department of

Neurological and Visual Sciences, Section of Biochemistry, of the University of Verona. The
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collaboration with the Mass Spectrometry laboratory of Computational, Analytical & Structural
Sciences, at the GlaxoSmithKline in Verona, permitted the identification of proteins for all the
analysis above mentioned; while the development of new statistical tools for comparative proteomics
analysis it was possible thanks to the collaboration with Department of Environmental and Life
Sciences, of the University of Eastern Piedmont, and the Department of Chemistry and
Pharmaceutical and Alimentary Technologies of the University of Genoa.

The results thus obtained are here discussed and evaluated.

VIII
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Chapter 1

CHAPTER 1:

INTRODUCTION TO THE PROTEOME
AND PROTEOMICS

1.1 GENERAL INTRODUCTION

Proteins are the final products manufactured in living cells according to the ‘blueprint’ contained in
the genome. The proteome is defined as “the PROTEin complement expressed by a genOME”,
thus it is fusion word derived from two different terms [1, 2]. The proteome represents the array of
proteins that are expressed in a biological compartment (cell, tissue, organ) at a particular time, under
a particular set of conditions [3]. Because proteins are key structural and functional molecules, the
molecular characterization of proteomes is necessary for a complete understanding of biological
systems. Large-scale, comprehensive analysis of proteins is the objective of proteome science
(proteomics). The scope of proteomics is broad; it encompasses:

1) the identification and quantification of proteins in cells, tissues and biological fluids;

2) the analysis of changes in protein expression in normal versus diseased cells;

3) the characterization of post-translational modifications;

4) the studies of protein-protein interactions;

5) other general applications.
The goals of proteomics research include: clarification of molecular mechanisms that govern cellular
processes; characterization of complex protein networks and their perturbations; discovery of
biomarker proteins for detection and diagnosis of diseases; and, identification of targets for the
design of drug treatments. The expansion of proteomics was driven by technology. Although the
concept of global protein analysis as a complete inventory of human proteins was proposed 20 years
ago [4], proteomic research was made possible in the mid-1990s only because of concurrent
developments in three areas:
1. Two-dimensional electrophoresis (2DE) has evolved into a robust method to rapidly separate the
many proteins contained in a proteome.
2. Mass spectrometry (MS) methods were developed for ready and accurate analysis of 2DE

separated proteins with a high degree of sensitivity and specificity.
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3. Large-scale genome research has produced a constantly increasing number of sequences that were
catalogued in several databases, which could be accessed over the Internet, and search engines and
other bioinformatics tools were developed to interrogate these databases.

2DE, MS and bioinformatic tools are the key components of an approach that has been termed “the

classical proteomic methodology”.

1.2 PROTEOME ANALYSIS BY 2DE GEL
ELECTROPHORESIS AND MASS SPECTROMETRY

1.2.1 BASIC METHODOLOGY

The basic 2DE-based proteomic methodology includes several steps (Fig. 1):

- solubilization of proteins from the sample (e.g. tissue);

- separation of the proteins by 2DE;

- digitization of 2D gels and computer-assisted analysis of protein spot patterns;
- determination of specific attributes of the proteins of interest by MS;

- searching of databases with these attributes for identifying the proteins.

Cell/Tissue/Fluid

r LI -
Solubilization of Proteins

L
Separation of Proteins by 2D Gel Electrophoresis

L]
Computer-Assisted Analysis of 2D Gel Images

¥
[ Enzymatic Digestion of Proteins of Interest
T
Peptide Mass Fingerprinting
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Figure 1. Steps involved in 2DE-based proteomics analysis. (Abbreviations: MALDI-ToF-MS, matrix-assisted
laser desorption/ionization time-of-flight MS; ESI-Q-IT-MS, electrospray quadrupole ion-trap MS).
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Treatment of samples for 2DE involves cell lysis and solubilization of proteins. Sample preparation
is commonly carried out in a solution containing chaotropes, detergents, reducing agents, carrier
ampholytes and, depending on the sample, protease inhibitors [5, 6]. An aliquot of the sample
solution is subjected to 2DE. 2DE is a powerful separation technique, which allows simultaneous
resolution of thousands of proteins. The high-resolution capability of 2DE stems from the fact that
the first and second dimensions are based on two independent protein characteristics. The first
dimension of 2DE is isoelectric focusing (IEF), during which the proteins are separated based on
their charge. In the second dimension, the proteins are separated orthogonally by SDS-PAGE
according to their molecular mass (Mr). 2DE was first introduced in the early 1970s [7]. However, its
widespread application was hampered by experimental drawbacks and by the lack of techniques
capable of analyzing 2DE-separated proteins. The experimental difficulties were overcome by the
introduction of immobilized pH gradient for IEF, that are now commercially available as gel strips.
Using these standardized gels, it is now possible to separate higher loads of proteins, sufficient for
further characterization, and to generate highly-reproducible 2D maps. After separation, proteins in
2D gels are visualized by staining, commonly with a Coomassie Blue dye, Sypro Ruby fluorescent
stain, or with a modified silver stain that is compatible with subsequent MS analysis [8]. The 2D gels
are digitized and the resulting gel images are qualitatively and quantitatively analyzed with specialized
software programs (such as PDQuest, Melanie, Z3 and Z4000, Phoretix and Progenesis). In this
manner, proteins can be quantified and spot patterns in multiple gels can be matched and compared.
Statistical analysis can be performed on groups of features (spots) in sets of gels, and variations,
differences, and similarities can be evaluated. Proteins resolved by 2DE can be identified based on
unique attributes that are measured by MS. These attributes are determined from analysis of peptides
generated by proteolytic digestion of the protein of interest. The most commonly used enzyme for
protein digestion is trypsin, which cleaves the protein at the C-terminal side of lysine and arginine. If

needed, proteases with other specificities can also be employed.
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Figure 2. General strategy for proteome analysis by 2DE, MS, and database searching.

Two specific protein attributes can be obtained by MS analyses of proteolytic digests. The first
protein attribute is the so-called peptide-mass fingerprint which involves determination of the
masses of all peptides in the digest. The second attribute includes fragmentation of selected peptides
inside the mass spectrometer into series of sequence-diagnostic product ions. From these product

ions, a portion of the amino acid sequence of the peptide (a ‘sequence tag’) can be deduced;
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alternatively, uninterpreted product-ion spectra can be used directly for protein identification. MS
instrumentation techniques that have played a key role in proteomics and in the analysis of peptides
and proteins in general are: matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-
ToF-MS) and electrospray ionization-quadrupole ion trap MS (ESI-Q-IT-MS).

MALDI-ToF-MS and ESI-Q-IT-MS are based on different physicochemical principles and have
different characteristics [9]; therefore, they can yield complementary analytical information. These
two methods provide the needed sensitivity and specificity for proteomics research. MALDI-Tol-
MS is commonly used for peptide-mass fingerprinting. The method is user-friendly, fast (3-5 min per
analysis), sensitive (fmol peptide levels), and it measures peptide masses with accuracy better than 50
ppm. However, MALDI-ToF-MS is impractical for the sequencing of peptides in proteolytic digests,
unless the peptides are derivatized prior to analysis [10].

To obtain peptide-sequence data (product-ion spectra), ESI-Q-IT-MS is usually employed; typically,
peptide mixtures are first separated by liquid chromatography, which is coupled on-line to the ESI-
Q-IT mass spectrometer. This method requires about 1h per analysis, but good-quality product-ion
data are a very specific attribute for protein identification. Many proteomics laboratories have
adopted a two-tiered protein identification strategy (Fig. 2), where MALDI-ToF-MS is used first to
obtain peptide-mass fingerprinting data, and a database search is performed with these data. If the
protein is not unambiguously identified, then the more time-consuming ESI-Q-IT-MS analysis is
carried out to generate product-ion data. Peptide-mass fingerprints, product-ion data or peptide-
sequence tags are used to search a protein sequence database to identify the protein of interest (Fig.

3) [11].
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Figure 3. Mass spectrometers used in proteome research. The left and right upper panels depict the
ionization and sample introduction process in electrospray ionization (ESI) and matrix-assisted laser
desorption/ionization (MALDI) respectively. The different instrumental configurations (a—f) are shown with
their typical ion source. a, In reflector time-of-flight (TOF) instruments, the ions are accelerated to high
kinetic energy and ate sepatrated along a flight tube as a result of their different velocities. The ions are turned
around in a reflector, which compensates for slight differences in kinetic energy, and then impinge on a
detector that amplifies and counts arriving ions. b, The TOF-TOF instrument incorporates a collision cell
between two TOF sections. Ions of one mass-to-charge (7/3) ratio ate selected in the first TOF section,
fragmented in the collision cell, and the masses of the fragments are separated in the second TOF section. c,
Quadrupole mass spectrometers select by time-varying electric fields between four rods, which permit a stable
trajectory only for ions of a particular desired 7/3 Again, ions of a particular m/z are selected in a first
section (Q1), fragmented in a collision cell (q2), and the fragments separated in Q3. In the linear ion trap, ions
are captured in a quadrupole section, depicted by the red dot in Q3. They are then excited via resonant
electric field and the fragments are scanned out, creating the tandem mass spectrum. d, The quadrupole TOF
instrument combines the front part of a triple quadruple instrument with a reflector TOF section for
measuring the mass of the ions. e, The (three-dimensional) ion trap captures the ions as in the case of the
linear ion trap, fragments ions of a particular 7/z, and then scans out the fragments to generate the tandem
mass spectrum. f, The FT-MS instrument also traps the ions, but does so with the help of strong magnetic
fields. The figure shows the combination of FT-MS with the linear ion trap for efficient isolation,
fragmentation and fragment detection in the FT-MS section.

The identification is made by comparing the experimentally-generated data with theoretical data
calculated for each database entry. The rationale is to retrieve proteins that would produce the same

set of data if digested and analyzed in the same manner as the protein under study. Usually, a list of
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candidate proteins that most closely match the input data is generated by the search, and the
candidate proteins are ranked using various scoring algorithms. Constraints can be included to limit
the search to a specific subset of database entries, e.g., proteins from a particular species. Several
protein sequence databases are available in the public domain. An excellent annotated database is the
SWISSPROT database that is maintained by The Swiss Institute of Bioinformatics and The
European Bioinformatics Institute [12, 13]. The main advantages of the SWISSPROT database are
low redundancy and a high degree of annotation. The August 2002 release (Release 40.25) of the
database contains 112,657 protein entries. Database search programs are often included in
commercial software packages that are provided with mass spectrometers. One such example is the
SEQUEST program that is used for database searching with uninterpreted product-ion spectra. A
number of search engines can also be accessed free-of-charge over the Internet, for example the
Peptldent and Multldent programs at the ExPASy Molecular Biology server [14], MS-Fit and MS-
Tag at the Protein Prospector server [15], or MASCOT at the Matrix Science server [16]. These
websites also provide additional proteomics software tools, technical information, and links to other
resources.

An important set of web-based resources are reference databases of proteins identified by 2DE-
based proteomics. In recent years, such reference databases have been established for various tissues,
cell lines, body fuids and other biological systems. A reference database usually contains one or more
2D-gel images and textual information about identified proteins that can be retrieved by clicking on
a particular spot on the gel images. Guidelines have been proposed in an effort to standardize the
building of 2DE reference databases [17]. An index of 2DE databases that are available to the

scientific community can be accessed at the ExPASy proteomics server [14].

1.2.2 ADVANTAGES OF 2DE-BASED APPROACHES

The 2DE-based approach has several characteristics that are currently unmatched by other
proteomics methodologies:

1. The information content of the data obtained by the 2DE-based approach is high because a
number of specific protein attributes can be determined. Thousands of proteins can be resolved and
visualized simultaneously on a single 2D gel; for each protein, the isoelectric point, Mr, and the
relative quantity can be measured. With MS, each protein can be characterized via a unique peptide

mass fingerprint and/or amino-acid sequence tag.
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2. High-resolution capabilities of 2DE allow the separation and detection of post-translationally
modified proteins. In many instances, such proteins can be readily located in 2D gels because they
appear as distinctive horizontal or vertical clusters of spots. In addition, modified proteins can be
revealed by MS analysis, when multiple spots of the same protein are identified.

3. Individual steps of the proteome analysis (2DE, imaging, MS, database searching) can be
separated in space and time. For example, 2DE and computer-assisted analyses of spots patterns can
be performed in an investigator’s laboratory, and protein spots of interest can be analyzed in a
service facility at a later date. It is also important to point out that 2D gels can serve as high-capacity
‘fraction collectors’ for the purification and long term filing of proteins. On a single, dried 2D gel,
thousands of proteins can be stored at room temperature, in a space equal to one notebook page. In
this manner, proteins from precious sources, such as rare tumor-tissue specimens can be preserved
for extended periods of time. Proteins stored within dried gels for months, even years, can be
identified by MS.

4. In terms of equipment and personnel resources, the 2DE-based technology is well suited for
research conducted in an academic setting. Most scientists engaged in biological research are familiar
with one-dimensional gel electrophoresis; 2DE, while more complex and labor-intensive, is a natural
extension of their expertise. In addition, 2DE equipment is relatively inexpensive and can therefore
be supported by individual project grants. Access to other essential components, such as mass
spectrometers and bioinformatic resources, can be obtained through shared-instrumentation and/or
fee-for-service facilities, which are in place at many academic institutions. Thus, many investigators
from various scientific disciplines can incorporate proteomics into their research programs. By
contrast, alternative proteomics methodologies [18,19] rely almost exclusively on cutting-edge, high-

cost MS instrumentation.
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1.3 QUANTITATIVE PROTEOME ANALYSIS

1.3.1 TRADITIONAL APPROACH (2DE/MS)

The investigation of the structure, function, and control of biologic systems and processes defines a
significant part of biologic and medical research [20]. Traditionally, such investigations have been
essentially reductionist in nature. A system (biochemically, pharmacologically, or genetically
dissected) was reconstructed from the knowledge gained from detailed analysis of individual
components. Although this approach has been generally very successful, it has limited ability to
establish functional connections between processes and pathways or functional modules that are
concurrently active in the same cell. Furthermore, the success of this approach depends on the
availability of specific assays that indicate the function of a specific component. The genome
projects have yielded the complete genomic sequence for a number of species, including humans.
They have also led to the emergence of an array of technologies for the systematic collection of
biomolecular data and have catalyzed a new approach to study biology that is somewhat
interchangeably referred to as discovery science, comprehensive biology, or systems biology [21].
The essence of this approach is the expectation that the global and, if applicable, quantitative analysis
of the components that constitute a biologic system under different perturbed conditions will
provide useful information that describe the state and, potentially, the mechanism of operation of
the system, even in the absence of prior hypotheses [22, 23]. Several methods, including serial
analysis of gene expression [24], oligonucleotide and cDNA arrays [25, 26], and large-scale
sequencing of expressed sequence tags have been developed to systematically measure gene
expression at the mRNA level. The discovery of post-transcriptional mechanisms that control rates
of synthesis and half-life of proteins suggests that the mRNA level of a particular gene might not
accurately reflect the amount of the corresponding protein expressed in the same cell, a notion that
was recently verified experimentally [27-29]. Therefore, the direct measurement of protein
expression is also essential for the genome wide analysis of biologic processes and systems. The
global analysis of gene expression at the protein level is also termed “proteomics.” The traditional
method for quantitative proteome analysis combines protein separation by high-resolution two-
dimensional isoelectric focusing (IEF)/SDS-PAGE (2DE) with mass spectrometric (MS) or tandem
mass spectrometric (MS/MS) identification of selected protein spots detected in the 2DE gels by use

of specific protein stains.
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1.3.2 THE ROLE OF ISOTOPES FOR QUANTITATION

In quantitative proteomics, the main sources of error are variations in the sample preparation
procedutes (e.g. protein extraction, enrichment, fractionation) and/or variations in the analysis [30].
These errors can be significantly reduced using internal standards. For this reason, stable isotopes
have been used since the early 1990s in peptide analysis [31]. However these early studies were
limited to the quantitation of one or a few analytes and stable isotopes have only recently been used
for quantiative proteomics. Normally, one sample is labeled with a heavy reagent and a second
sample is labeled with a light reagent. The two samples are then mixed and analysed by MS. The
ratio between the two isotopic distributions (one for the light reagent and one for the heavy reagent)
can then be determined from the mass spectra and used to calculate the relative protein quantities.
Several labeling approaches in combination with MS have been developed to do quantitative
profiling. These methods can be mainly divided into three classes: iz vivo labeling, in vitro pre-

digestion labeling, and post-digestion labeling (Fig. 4).

(a) in vivo labeling {b) Pre-digestion {c) Post-digestion
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State 1  State 2 Y= R
State 1 State 2 State 1 State 2

b
AN ooy

L, Mix 4J Extract Extract Extract Extract
¢ Fractionate Fractionate Fractionate Fractionate
Extract/Fractionate ¢ ¢ ; ;
¢ Label Label Digest Digest

Digest L’ Mix ‘J Latel Late!

Digest —— Enrich f_or I_’ Mix{J
Cys-peptides

h 4 h 4

Relative quantitation from mass spectra

Figure 4. Schematic representation of quantitative proteomics procedures usinf MS. Depending on the point
in the process where the label is introduced, most procedures can be clasiified as (a) iz vivo labeling, (b) in vitro
pre-digestion labeling or (c) i witro post-digestion labeling. In the procedure that uses 30, the label is
introduced during the digestion. However the two samples are mixed after digestion, thus it could categorized
as post-digestion labeling.
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1.3.2.1 In vivo labeling

The n vivo labeling method was first described by Oda e 2/ [32]. In this procedure, yeast cells were
grown in two separated media, one of which contained heavy isotopes (in this case "N). The two
yeast cultures were combined, the proteins extracted, fractionated and then separated by gel
electrophoresis. Finally, the proteins of interest were digest with trypsin before MS analysis and the
relative quantities determined from the isotopic distribution ratios.

In vivo labeling proved to be an effective way for performing quantitative proteomic experiments.
However, this approach cannot be applied to tissues or body fluids and is limited to cells that can be
grown in culture in “controlled media”. However, in 7z wvivo labeling procedures, the internal
standards is introduced early in the process, thus obviating the variations caused by sample

preparation and giving higher accuracy to the quantitation.

1.3.2.2 In vitro pre-digestion labeling

Gygi et al [33] developed a quantitative proteome analysis using a class of reagents termed isotope-
coded affinity tags (ICATSs) and electrospray ionization MS. For comparing the protein profiles of
yeast grown in two different conditions (galactose and ethanol as carbon source), they synthesized
biotinylated iodoacetamide derivatives in a heavy form (deuterated) and in a light form, and used
them to label the cysteines of the two protein extracts before combining and proteolyzing them with
trypsin. The major innovation of this approach was that an affinity tag (biotin) was used to purify
cysteine-containing peptides (Fig. 4), reducing the complexity of a peptide mixture by about a factor
of 10 as a result, several proteins that usually can’t be observed in an approach like 2DE could be
identified and quantified.

Several studies have further proved the utility of these reagents in quantitative proteomics [34-30];
however when evaluating the ICAT approach, the high cost and the several chromatographic steps

involved before the MS analysis should also be considered.

1.3.2.3 In vitro post-digestion labeling

In several procedures, isotopic labels have been introduced after proteolysis. For example,
Mirgorodskaya e al. [37] catried out the enzymatic digest in the presence of O-water or regular
water. The sample digested with *O-water icorporates '*O, generating an isotopic label that was used

for relative quantitation. Another simple procedure for incorporating a label is to esterify the
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carboxyl groups of the tryptic peptides with deuterated methanol (CD;OH) [38]. This sample can
then be mixed and compared with another sample that has been esterified with regular methanol.
One of the minor disadvantages of this approach is that the harsh esterification condition
requirement (hydrochloric acid solution) might produce partial deamidation of asparagine and
glutamine residues, increasing the sample heterogeneity. In addition, this proceudre should be carried
out in anhydrous conditions, which can be difficult to obtain.

In a strategy named mass-coded abundance tagging (MCAT), the e-amino group of lysine was also
labeled [39]. Only one sample is modified with the reagent (O-methylisourea) and compared with the
unmodified sample for determining the relative quantities. Although this procedure is simple and
inexpensive, several issues related to the difference in the chemical-physical characteristics between

the labeled and unlabeled peptides markedly reduce the accuracy of the quantitation.
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1.4 PROTEOMICS IN DISEASE STUDIES

In combination with genomics, proteomics can provide a holistic understanding of the biology
underlying disease processes. Information at the level of the proteome is critical for understanding
the function of specific cell types and their role in health and disease. Mammalian systems are much
more complex than can be deciphered by their genes alone. Expression analysis directly at the
protein level is necessary to unravel the critical changes that occur as part of disease pathogenesis.
This is because proteins are often expressed at concentrations and forms that cannot be predicted
from mRINA analysis. Proteomics also provides an avenue to understand the interaction between the
functional pathways of a cell and its environmental milieu, independent of any changes at the RNA
level.

Quantitative proteomics strives to investigate the changes in protein expression in different states,
such as in healthy and pathological tissue or at different stages of the disease. This enables the

identification of state- and stage-specific proteins (Fig. 5).
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Figure 5. Scheme of a proteomic disease study. Protein samples from control and pathological samples atre
run on two-dimensional gels. Multiple images are generated and the resulting information is assembled into a
proteomic database. The blue arrows indicate proteins that are specifically altered in disease samples. Protein
profiles can be compared using appropriate software. The columns represent proteins that are increased (red)
or decreased (blue) on the gels. Protein features of interest are identified by excision from the gel, followed
by protease digestion and MS analysis.
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1.4.1 PROTEOMICS IN CANCER RESEARCH

Cancer is a multi-faceted disease that presents many challenges to clinicians and cancer researchers
searching for more-effective ways to combat its often devastating effects [40]. Among the central
challenges of this disease, are the identification of markers for improved diagnosis and classification
of tumors, and the definition of targets for more-effective therapeutic measures. Although some
cancer-related genes have been mainly identified by mutational analysis, at present, tumor
classification is a complex process based primarily on site and histological examination. However,
tumors with a similar histological appearance can follow significantly different clinical courses and
show different responses to therapy [41]. Given the wide diversity of tumors, even those derived
from the same tissue, additional methods of classification are urgently required. Furthermore, it is
now clear that the genetic make-up of both the tumor and the individual patient can influence the
outcome of a given treatment. Therefore, to be most effective, future treatments will need to be
tailored not only for the specific tumor type but also, in some cases, for the individual as well.
Proteomics approaches to tumor marker identification hold the promise of identifying specific
protein modifications in tumor tissues to assist in individualizing treatments for certain cancers. With
the completion of the draft sequence of the human genome [42, 43], there is a great deal of interest
in the use of functional genomics, especially gene expression profiling techniques such as DNA
microarrays and proteomics, to identify cancer-associated genes and their protein products. These
two complementary technologies permit the analysis of thousands of genes or proteins
simultaneously, and have the potential to identify markers for early detection, classification and
prognosis of tumors, as well as pinpointing targets for improved treatment outcomes.

Global protein profiles can be produced for normal compared with tumor cells in a given tissue, or
for cells before and after treatment with a specific drug. Currently, this is the most widely used model
of proteomics and is largely dependent upon 2D gel electrophoresis (2DE) for visualization of
protein profiles. Expression proteomics is the protein equivalent of DNA microarray analysis that
define global patterns of RNA expression under various conditions. Like DNA microarrays, it has
the advantage of being non-prejudicial and could define unexpected ways in which known proteins

regulate cellular responses.
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1.42 PROTEOMICS IN DRUG DEPENDENCE AND
PSYCHIATRIC DISORDERS

Drug addiction, like all other psychiatric disorders, is diagnosed today solely on the basis of the
behavioral abnormalities that patients exhibit [44]. For example, addiction can be defined as
compulsive drug seeking and taking despite adverse consequences or as loss of control over drug use.
However, there is no objective diagnostic information we can offer individuals concerning their risk
for addiction in general, let alone addiction for a specific substance, nor can we offer patients
informed advice concerning their risk for relapse. Moreover, current treatments for drug addiction
are inadequate for most individuals.

Recent advances in proteomics and functional genomics can be expected to dramatically improve
psychiatric practice overall and the treatment of addictive disorders in particular. Two major areas of
advances in this evolving field of “psychogenomics” are seen: (1) identification of genes that confer
risk for an addiction and (2) identification of genes and proteins that contribute to the regulation of
reward, motivation, and cognition under normal circumstances and to abnormalities in these
behaviors that characterize an addicted state. There is now considerable optimism that these
advances will lead to objective diagnostic tests, improved treatments, and eventually preventive
measures and cures.

Epidemiological studies have indicated that drug addiction is a highly heritable disorder.
Approximately 40-60% of the risk for alcohol, cocaine, or opiate addiction appears to be genetic
[45]. Data are not yet available for nicotine or other substances, although anecdotal information
suggests similar degrees of heritability. Despite this genetic basis, however, efforts to identify specific
genes involved in drug addiction have not to date been successful. The difficulty in finding such
genes is comparable with the difficulty in finding genes for other common conditions (e.g.,
hypertension, congestive heart failure, and asthma). One possibility is that these diseases are caused
by a relatively large number of genes, such that it is extremely difficult to identify the individual genes
involved, each of which is only responsible for a small percentage of the overall risk. Another
possibility is that the tools for fine genome-wide scans in large numbers of individuals have only
recently become available.

Knowledge of genes that confer risk for addiction could be used to select the optimal treatment
program for an individual addict. For example, in the depression field, some antidepressants are

serotonin-reuptake inhibitors, whereas others inhibit norepinephrine reuptake. There is a major
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effort today to identify genetic factors that can be used to predict whether a person with depression
would respond better to one or the other. Such pharmacogenomic studies are in their early stages,
and would appear premature for addiction, because treatments for drug addiction, and our
knowledge of the underlying genetic factors, are still limited.

Once addiction vulnerability genes or genes that predict pharmacological responses are discovered,
the next step will be to place these genes in mice to enable studies of the underlying molecular and
neural mechanisms that link the genes to abnormal behavior.

As genomic and proteomic efforts succeed in identifying genes and proteins involved in normal
behavior and in addiction, several tangible benefits will result. The most obvious is the identification
of novel targets for psychotherapeutic medications. All but a few currently used psychiatric
medications act on neuro-transmitter receptors or transporter proteins. Yet these proteins represent
a minuscule fraction of all neuronal proteins, and it is likely that among this remaining array of
proteins are viable drug targets, including targets for truly effective anti-addiction medications. The
challenge is to find them.

Similarly, as we define the detailed etiology and pathophysiology of addiction, it should be possible to
develop medications that intervene in the addiction process.

Advances in our understanding of the genetics and neurobiology of drug addiction will have dramatic
implications for diagnosis and prevention as well.

The fields of genomics and proteomics provide tools of unprecedented power for identifying genes
and proteins that control complex behavior under normal and pathological conditions. Eventually,
these discoveries can be exploited for clinical applications as diverse as improved treatments,

diagnostic tests, and ultimately disease prevention and cure.
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CHAPTER 2

COMPARATIVE PROTEOMICS:
A NEW ISOTOPICALLY MARKED
ALKYLATING AGENT

21 INTRODUCTION

Often one of the important aspects in proteomics studies is the need to measure the relative amount
of proteins [1]. This is essential for studying the effect of an agent on a biological system or for the
comparison of two different biological states. The most traditional approach for quantifying proteins
in a proteomic experiments is to measure the ratios of the protein spot intensities in two
independent gels that are stained by Coomassie or fluorescent stain. More recently, many other
alternative procedures have been introduced to quantify proteins. These include the use of ICAT
reagents [2-4], the use of differential labeling of cells in culture [5, 6], the use of a H,"*O water in the
digest [7, 8] and the use of deuterated methanol for peptide esterification [9]. All of these
methodologies have been shown to be useful in some cases. However, none of them works all the
time and they have their pros and cons. There is still a need for simple and inexpensive alternatives
for quantifying proteins. The approach proposed here is a simple method for determining relative
quantities of proteins isolated by gel electrophoresis. The method is based on the differential
labelling of the mixtures by use of a commercially available acrylamide and deuterium-labelled
[2,3,3’-d;]-acrylamide to alkylate proteins prior to 2-D gel electrophoresis. The tryptic digests of the
separated proteins were subjected to reflector MALDI-TOF analysis and the relative peak heights of
cysteine-containing peptides were used to quantify their precursor proteins. This approach was
tested for the relative quantification of proteins within an artificial mixture of standard proteins and
for proteins observed in the 2-D map of rat serum. A good correlation was found between the
measured ratios derived from MALDI-TOF data and those theoretically calculated prior to 2-D
analysis via known mixing ratios of the two alkylating reagents. It is worth noting that the use of
deuterium labelled acrylamide was used by Sechi and Chait [10] to improve the information content
of MS experiments. The present data demonstrate that the alkylation efficiency is not influenced by

the isotopic composition of the acrylamide, which makes the present approach fairly simple and
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fairly reliable for the relative quantification of proteins derived from two different mixtures and

treated with the light and heavy forms of this commonly used alkylating agent.

2.2 EXPERIMENTAL PROCEDURES

2.2.1 LABELING A STANDARD PROTEINS MIXTURE

The standard proteins used were: chicken egg lysozyme (accession no. P00698 in Swiss-Prot
database), human «, acid glycoprotein (accession no. P02763 in Swiss-Prot database) and bovine

apo-transferrin (accession no. Q29443 in Swiss-Prot database) purchased from Sigma-Aldrich (St.

Louis, MO; USA). Proteins were dissolved (50 pL) in 40 mM Tris, pH 8.5 and fully unfolded and
reduced by treatment with 5 mM tributyl phosphine, 2 M thiourea and 7 M urea for 90 minutes at
room temperature. The resulting reaction mixture was divided into two parts, the first was
alkylated/labeled with 100 mM d,-acrylamide, while the second was alkylated/labeled with 100 mM
dj-acrylamide. After 5 h, the two fractions were mixed in five different ratios (90/10* - 70/30* -
50/50* - 30/70* - 10/90*; * = d;-acrylamide alkylated fraction) and subjected to overnight dialysis at

4°C to stop the alkylation and to remove excess reagents and salts.

2.2.2 PREPARATION AND LABELING OF RAT SERUM

One hundred pl of rat serum containing 6 mg total protein were added to 40 mM Tris buffer, pH
8.5, containing 5 mM TBP, 1.5 M thiourea, and 6 M urea and left for 2 hours at room temperature.
The resulting mixture was divided in two parts, the first was alkylated with 50 umol d;-acrylamide,
while the second fraction was alkylated with 50 pmol d;-acrylamide. The resulting two fractions were

then mixed in the ratios 50/50* and 30/70*, dialysed overnight and subjected to 2-D gel analysis.

2.2.3 TWO-DIMENSIONAL ELECTROPHORESIS

Seven cm long, pH 3-10 immobilized pH gradient strips (IPG, BioRad laboratories, Hercules, CA,
USA) were rehydrated for 4 h with 150 puLL of 2-D solubilizing solution containing 450 ug protein.

Isoelectric focusing was conducted at 20°C for 25000 Vh at a maximum of 5000 V using a Protean

IEF cell (BioRad). For the second dimension, the IPG strips were equilibrated in a solution of 6 M
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urea, 2% SDS, 20% glycerol, Tris-HCI pH 8.8, then were laid on a 7-20% T gradient SDS-PAGE.
Gels were run at 10°C and 5 mA/gel for 1 h, 10 mA/gel for 1 h, 20 mA/gel for 2 h. Proteins were

detected by colloidal Coomassie blue, and destained in 5% acetic acid.

2.2.4 PROTEIN IDENTIFICATION AND QUANTITATION

Protein identification and quantitation were performed by the Department of Computational, Analytical and
Structural Sciences staff of GlaxoSmithKline Discovery Research.

The gel bands of interest were excised with a razor blade, placed in eppendorf tubes, and destained
by washing twice with 50% 5 mM Ttris/50% acetonittile solution. The gel pieces were dehydrated by
addition of acetonitrile. Excess solvent was removed, followed by a 20 min. drying by a SpeedVac
centrifuge apparatus. The gels were rehydrated by adding 15-30 pl of a solution containing 2.5 mM
Tris and modified trypsin from Promega. The rehydrated gels were kept for 4 h at 37°C. Peptides
were extracted by adding 30 pl of a solution containing 50% acetonitrile and 50% water with 1% of
formic acid. The extracted peptides were loaded onto the target plate by mixing 1 ul. of each

solution with the same volume of a matrix solution (10 mg/mL a-cyano-4-hydroxycinnammic acid
in 50% ethanol and 50% acetonitrile) and left to dry at room temperature. The MS analyses were
performed using a TofSpec-2E MALDI-TOF instrument (Micromass, Manchester, UK), equipped
with a pulsed nitrogen laser (337 nm, pulse width 4 ns) and operated in reflectron mode with an
accelerating voltage of 20 kV. Identification of the standard proteins was performed by submitting
its known sequences to the PeptideMass tool and manually comparing the predicted peptide masses
of each standard protein to the measured masses in the mass spectrum. For identification of the
proteins from rat serum, the measured mass of the tryptic peptides were searched against ra entries
from Swiss-Prot using the MS-Fit program (University of California, San Francisco;
prospector.ucsf.edu/). The observed pl and Mr of the identified spots in the 2DE map were
compared with the theoretical pI and Mr to confirm identifications. For quantifying the relative
abundance of a protein, the peak height of the monoisotopic peak of the light acrylamide-labeled
peptide was divided by the peak height of the monoisotopic peak of the heavy [2,3,3’-d;]-
acrylamide-labeled form of the peptide. When more than one cysteine-containing peptide was
detected for a particular protein, the abundance ratio was calculated from the peak pair with the
highest signal intensity. In cases in which the shape of the isotope distributions of the light and

heavy [2,3,3’-d;]-acrylamide-labeled peptides differed (Ze. asymmetric shape of the clusters) we
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suspected the presence of contaminating peaks and did not use such peak pairs for quantification.

Instead, the peak pair with the next highest signal intensity was used.

2.3 RESULTS

The method for quantitative protein profiling described in this work is schematically illustrated in
Fig. 1. It is based on the separation of proteins alkylated/labeled with acrylamide (d,/d;) by 2DE
and their identification and quantification by mass spectrometry. The proteins contained in two
separate samples are first alkylated with the isotopically normal (non-deuterated) or heavy forms
(deuterated), respectively, of acrylamide. The two samples are then combined and concurrently
separated by 2DE in the same gel, and the separated proteins are detected by an MS compatible
staining protocol. The proteins migrating to specific spots are enzymatically digested in the gel
matrix, and the resulting peptides are extracted and analyzed by mass spectrometry. Protein
identification is achieved by MALDI-TOF analysis and sequence data base searching. It should be
pointed out that the analysis of the intact protein is an optional step which may be used as an early
screening for possible gel-induced and/or post-translational modifications. The ratio of abundance
of the protein in the spot analyzed is determined by the ratio of signal intensities for the isotopically

normal and heavy forms of a specific, tagged peptide.

Sample A Sample B
reduction reduction
alkylation with do-acrylnmiK‘ alW—acrylamide
dialysis

EN

[ - - 2D-gel
- ﬂj"’ . szmay R analysis
i

— .‘r -

Spot excision .

digestion T
¢ Analysis of intact
o _ . proteins by linear
Analysis of tryptic peptides by MALDI-TOF
reflector MALDI-TOF

Figure 1. Schematic illustration of the proposed method for quantitative protein profiling.
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2.3.1 ACCURACY OF QUANTIFICATION

For evaluating the accuracy of quantification of the method we prepared and analyzed a mixture of
three standard proteins, lysozyme, o, acid glycoprotein, and apo-transferrin. The mixture was
divided into two parts, one sample was alkylated with the isotopically normal and the other with the
heavy form of the acrylamide, the samples were combined in five different ratios (90/10* — 70/30* —
50/50* — 30/70* — 10/90*) and separated by 2DE which yielded five different 2D maps (Fig. 2).

Figure 2. Five different 2D maps obtained by do and d3 alkylated samples combined in five different ratios:
(1) 90/10%, (2) 70/30%, (3) 50/50%, (4) 30/70*, (5) 10/90*. The three standards proteins cotrespond to: (I)
lysozyme, (II) o acid glycoprotein, (11I) apo-transferrin.

Protein spots were detected by colloidal Coomassie blue stain and in-gel digested with trypsin, and
the resulting peptides were identified and quantified by mass spectrometry. For each protein, the
predicted masses of the labeled, cysteine-containing peptides were also calculated and used to

identify the corresponding peaks in the mass spectra. Fig. 3 shows the peptide mass spectrum of
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apo-transferrin and expansions of the peak areas containing the signals for cysteine-containing

peptides.

131282
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Figure 3. Measurement of the relative abundances of proteins labeled with isotopically normal and heavy
acrylamide. (a) Reflector MALDI mass spectrum of an zz-sitn digest of apo-transferrin taken from a 2-D map
prepared using a mixture of standard proteins alkylated with dp-acrylamide and ds-acrylamide in the ratio
30/70%. (b) and (c) are two short intervals taken from (a) pertaining to the sequences SCHTGLGR and
KPVTDAENCHLAR.

Fig. 3(a) gives the MALDI spectrum of the entire digest, while (b, ¢) give two short intervals taken
from the same spectrum. These intervals refer to the indicated peptide sequences each of which has
a single cystine residue. In each of the two spectra there are two isotopic distributions marked A and
A* where a difference of 3 Th (Thomson, unit of m/z) in the m/z of the corresponding peaks
within the two distributions is clearly evident. This observation can be easily justified by the
following considerations: It is well documented'®"® that the free —SH group in the side chain of

cystine is the favourite site for interaction with acrylamide and other commonly used alkylating
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agents. The two isotopic distributions in (b) and (c) refer to two sister peptides derived from two
protein fractions, the one treated with d,- and the other one with d;-acrylamide. The same spectra
show that the relative peak heights associated with (A) is ~34% compared to ~66% associated with
the corresponding peaks in distribution (A*), which is in reasonable agreement with the labelling
ratio (30:70%) effected prior to the electrophoretic separation. Similar spectra were used to construct
table 1, which compares the measured and calculated protein ratios marked with d,- and d;-
acrylamide.

These results demonstrate the possibility of using d,- and d;- acrylamide alkylation for accurate

quantification of proteins separated by 2DE.

Protein Expected ratio  Observed ratio  Identified Sequences
d,/d; dy/d,
Apo-trasferrin 30/70 33/67 DGTRKPVTDAENCHLAR
34/66 KPVIDAENCHLAR
34/66 KNYELLCGDNTR
35/65 SCHTGGR
50/50 47/53 DGTRKPVTDAENCHLAR
49.5/50.5 KPVIDAENCHLAR
47/53 SCHTGGR
al-acid glycoprotein ~ 30/70 33/67 CEPLLEKQHEK
50/50 53/47 CEPLLEKQHEK

Table 1. Composition of each of the standard protein mixtures used for the experiment shown in Fig. 2. The
expected quantitative ratios and the quantitative ratios that were experimentally determined are listed in
columns two and three.
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2.3.2 QUANTIFICATION OF CHANGES OF PROTEINS
ABUNDANCE IN RAT SERUM

To assess the ability of the method in identifying proteins in complex mixtures and to quantify
changes in their abundance, we investigated changes in the protein profile on rat serum, which

yielded the 2-D map in Fig.4.
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Figure 4. 2D maps in the 3-10 IPG interval of rat serum composed of two fractions, the first (30%) was
alkylated with do-acrylamide, while the second (70%) was alkylated with ds;-acrylamide. The circled spots refer

to: transthyretin(l), apo-lipoprotein(Il), apo-lypoprotein A4(I1I), oi-macroglobulin(IV), sero-transferrin(V)
and albumin(VI).

The alkylation was achieved using the ratio 30/70* of d,/d;-acrylamide; a number of separated

proteins were digested 7z situ and subjected to reflector MALDI-TOF analysis. A representative
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spectrum pertaining to albumin is given in Fig. 5(a), while short scan intervals taken from the same

spectrum are presented in Figs. 5 (b, c¢). The observed isotopic distributions in both spectra are

attributed to the indicated sequences, each of which contains a single cysteine residue. Furthermore,

the more intense peaks in both spectra are displaced by 3 Th from their weaker counterparts. Such

displacement coincides with a single alkylation channel associated with the d;-acrylamide.

Considering the relative peak heights in both isotopic distributions we have calculated a ratio of

34/66*, which is in reasonable agreement with the labelling ratio 30/70* prior to 2-D separation.
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Figure 5. (a) Reflector MALDI mass spectrum of an zx-situ digest of albumin (spot VI) in Fig. 4. (b) and (c)
are two short intervals taken from spectrum in (a) pertaining to the sequences LPCVEDYLSAILNR and
RPCFSALTVDETYVPK used for the relative quantification.
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2.3 DISCUSSION

Cys residues are found in a wide variety of storage and structural proteins, enzymes, hormones,
receptors, microbial toxins [11]. Disulphide bonds associated with Cys residues are structural units
essential in most proteins and are largely responsible for the conformations and tertiary structures
that proteins assume both in solution and in the solid state. Because -SH groups are among the most
reactive functionalities in chemical and biochemical systems (e.g., they undergo sulphydryl-
dusulphide exchange, oxidation-reduction, nucleophilic addition, displacement conjugation reactions
[12]) it is only natural that a variety of methods have been described for stabilizing and/or protecting
them, in order to facilitate protein analysis. Among the most popular methods reported have been
alkylation with iodoacetamide (IAA) and N-ethylmaleimide (NEM). The use of IAA is not ideal
because it is difficult to drive the reaction to completion [13]; moreover, the reaction is not specific
for -SH groups, since it has been reported to modify also a-NH, groups of N-terminal chains and &-
NH, groups of Lys. Modification with NEM can result in a multiplicity of labelled peptides owing to
the formation of diastereoisomers and hydrolysis of the succinimide ring of the Cys adducts [14].

In the light of the above considerations, it is worth critically evaluating the results here presented.
The data in Figs. 3 and 5 give an initial indication that isotopic labelling of the acrylamide alkylating
agent together with MALDI-TOF mass spectrometry can be considered a valid approach for relative
quantification of gel-separated proteins. The difference of 3Th in the measured m/z values of sister
peptides was enough to distinguish between them; however, there is no reason why other alkylating
agents with a higher number of deuterium atoms can nmot be used in a similar fashion. Having said
this, it is fair to look closely at this approach compared to existing strategies for identifying the
strengths and the weaknesses of each of such approaches. Both the ICAT and the present
approaches assume specific and complete alkylation of all free —SH groups within the investigated
sequence(s), an assumption which is not fully supported by recent work [15-18]. These authors have
demonstrated that alkylation times as long as 6 h were not sufficient to produce more than 80%
alkylation; such efficiency is likely to be less in the case of the ICAT which has to accommodate a
biotin group and an ethylene glycol linker group. Not all proteins of interest contain cysteine, some
proteomes will have lower total protein coverage than the 92% commonly cited for yeast'”. Some
cysteine residues may contain post-translational modifications prior to isolation making them
unavailable for alkylation with cysteine-specific ICAT or acrylamide. To address the drawback of 7

vitro labelling of non-cysteine-containing peptides for protein expression analysis, a method
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complementary to the use of ICAT reagents has been described by Goodlett et al [19]. The method
uses differential stable isotope esterification of carboxylic acids in peptides to provide an internal
standard for relative quantification of peptides in a mixture regardless of their cysteine content.
Basically, protein digests derived from two different biological states are esterified with either d- or
d;-methanol; the two samples are combined and analysed by LC/MS-MS.

The MCAT strategy can not be considered an alternative to its ICAT counterpart, it is more
adequate to describe the two strategies as complementary approaches to protein quantification.
There are differences in details, yet the outcome of either approach gives a partial answer to the
question of protein quantification in complex mixtures. This statement can be supported by the
following considerations: both strategies are based on the modification of a specific amino acid, Cys
in the case of ICAT and C-terminal Lys in the case of MCAT, to allow discrimination between two
sister peptides derived from two different biological samples. In the first approach the alkylation of
Cys results in 8 Da difference, while in the second case guanidination of Lys results in 42 Da
increase. The use of MCAT alongside ICAT would overcome two main drawbacks of the latter
approach, mainly analysis of Cys-free proteins and the detection of peptides which happen to

contain post-translational modified Cys.

2.4 CONCLUDING REMARKS

Significant advances in protein identification have been accomplished over the last ten years through
the use of mass spectrometry, and large-scale or even proteome-wide protein identification is now a
common practice. The descriptive information obtained from such protein cataloguing projects can
be significantly enhanced if the quantity and changes thereof can be determined precisely for each
protein in a sample. The strategy described in the present method provides a simple and effective
tool by which accurate protein quantitation can be achieved in proteome-wide experiments. The
method also allows the determination of the absolute 2DE and mass spectrometry, two techniques
established in most proteomics laboratories. Moreover Cahill ¢f a/. [20] validated our approach (d,-
and d;- acrylamide-based) firstly by measuring the yield of proteins alkylated with AA, and secondly
by using differential radioactive labels (*’I and "'I) to quantitatively establish that non-comigration

in 2D-PAGE is negligible.
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The present method is not an alternative to existing strategies which rely on LC/MS-MS; however, it
offers a number of advantages which can be exploited in the field of protein quantification: (a) This
method uses relatively cheap and commercially available reagents which are commonly exploited in
the solubilization cocktail prior to any electrophoretic step, this means that no additional steps are
needed in the phase of sample preparation. (b) The use of 2-D gel in the present method requires
more time compared to LC/MS of an entire digest; on the other hand the use of high resolution
separation protocols offers two distinct advantages: it gives a more comprehensive picture of the
protein content of the sample, simpler MS data to interpret and the possibility to analyse intact
proteins, based on which a number of protein modifications can be spotted at an eatly stage of
analysis. The ability to elute and analyse intact proteins from a 2-D map is, in fact, a unique
advantage for those scientists seeking to attribute a post-synthetic modification to a specific protein
zone. Such possibility is in reality lost (or greatly hampered) in fractionation strategies based on
massive protein digestion prior to the separation process, such as those adopted in the ICAT and
other protocols.

It is possible to anticipate that this method [22] will find wide application in the field of quantitative
proteomics. For example Turko and Murad [21] used our method for quantifying protein expression

in heart mitochondria from diabetic rats treated with streptozotocin.
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CHAPTER 3

NEW STATISTICAL TOOLS FOR
COMPARATIVE PROTEOMICS (I):
SPOT FUZZYFICATION AND
MULTIDIMENSIONAL SCALING

3.1 INTRODUCTION

The comparison of 2-D maps from control and pathological (or treated) samples in order to identify
proteins connected with the disease is an intricate process [1-7]. This complexity arises from:

- the complexity of the maps, which may contain thousands of spots;

- the low reproducibility of the 2D-maps, caused by the effect of several experimental factors on the
final result (polymerisation conditions, sample pre-treatment, two-dimensional run conditions) [8];

- the small differences which often characterise samples from healthy individuals and diseased
patients. Differences which often might be due not simply to the absence or presence of some
proteins, but even to subtle changes in their relative amounts.

Today, the comparison of the 2-D maps is performed by different methods [9-11], all based on
similar approaches. The first step of the analysis consists in the alignment of the maps, following a
warping and matching process by shrinking or widening the spots with respect to the two
dimensions. This step is based on the choice of some landmark spots defined by the user. Then each
map is “cleaned”, by rejecting the spots which do not show a typical optical density pattern. This
step allows the elimination of several spots which do not contain biochemical information, whose
presence is caused by the effect of external experimental factors (e.g., staining artefacts). Once the
alignment is obtained and the maps have been cleaned, they are matched to one another and the
common information is identified.

In spite of all the problems connected with their comparison, 2-D maps are still very powerful for
proteome analysis. It is evident that it is necessary to work with replicates of the same experiment, in
order to take into account the experimental variability.

In the approach proposed here the comparison of different 2-D maps was approached with a

different method:
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- the comparison is performed on each replicate, not on a synthetic map;

- the spots in the maps are allowed to become fuzzy, with a broadening of the spots themselves, for
simulating the experimental uncertainty in their position, shape and size;

- similarity indexes between the fuzzy maps are calculated,;

- the matrix of similarities thus obtained is used as input in a Multidimensional Scaling (MDS)
calculation;

- the co-ordinates of each map obtained from the multidimensional scaling are employed in a pattern
recognition analysis which enables the clustering of different classes of samples, as belonging to
control and diseased, or treated, tissues.

The proposed procedure is first analysed by using simulated maps in order to show its potential

applications, then it is utilized for the analysis of real 2D maps.

3.2 THEORY

The method proposed for analysing 2D maps is based on two steps:

a) the calibration of the method;
b) its use for the classification of unknown samples.

The calibration produces a model that must be evaluated to check its ability to distinguish between

the different classes of subjects. If the model performs satisfactorily the classification of the known

samples (supervised analysis), it can be used for the assighment of new samples to the existing
classes (usually diseased or treated and control patients).

The calibration phase consists of five steps:

1. digitalisation of each map with the creation of a rectangular grid of cells. The grid is matched on
the 2D map and a signal varying from 0 (empty cell) to 1 (occupied cell) is assigned to each cell,
depending on the degree of occupancy of the corresponding area of the 2D map;

2. spot fugzyfication, i.e. a step where the spots are allowed to become more fuzzy so that the cells
occupied by the spots can influence the signal of the near cells [12];

3. calenlation of a similarity matrix (where each similarity is obtained from the matching of the
corresponding maps) for the comparison of all the pairs of transformed 2D maps;

4. multidimensional scaling analysis of the similarity matrix;
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5. statistical analysis of the co-ordinates of the 2D maps in the virtual space obtained from

multidimensional scaling by cluster analysis and/or classification methods.

3.2.1 DIGITALISATION

A 2D map can be treated as a two-dimensional surface corresponding to a grid of a given step. The
digitalisation of the map is obtained by a grid with a pass of 0.001 x 0.001 m, that produces a map of
200 x 200 cells.

Each 2D map is thus transformed into a matrix, corresponding to the grid. A 0 value is assigned to
the cell corresponding to empty zones of the 2D-maps, a unit value to the area occupied by the
spots. In the first application the percentage of black area of the cells (i.e. the degree of occupancy) is
not taken into account, only 0 or 1 is used to distinguish between empty and occupied zones. An

example of digitalisation is presented in figure 1.
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Figure 1. 2D map of sample HEA5 (a) and the correspondent digitalised image (b).

3.2.2 FUZZYFICATION

The spot fuzzyfication is very important since the position, size and shape of the spots on the maps
may change in different experimental runs performed on the same biological sample. Moreover,
different factors (such as temperature, contact time with development solutions, etc.) can contribute

to the appearance of spurious spots not directly attributable to the protein content of the original
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sample. This second step is very important since it allows to take into account the low
reproducibility of the 2D-maps. In order to avoid this stiffness, we allowed each spot to become a
fuzzy entity, thus having an influence on its neighbourhood. Each spot was turned into a two-
dimensional probability density distribution, centered on the spot itself. The cells of the grid contain,
after this treatment, a numerical value related to the degree of probability of finding a spot in the
correspondent cell. The two-dimensional function that was chosen for this purpose was a two-

dimensional gaussian function (figure 2).

Figure 2. Bi-dimensional Normal distribuition.

The influence of the presence of a spot in cell x;, y; on the neighbour cell x;, y, is calculated by the

following two-dimensional gaussian function:

1 [mx)? e ;=9
20-p7)| o 0.0, o’

F Gy X y) = 1 _,
i) jo Nk )l 27[0'x0'y- 1—p2

where
0., 0, = standard deviation of the gaussian function along each of the two dimensions;
p = correlation between the two dimensions x and y; fixed at 0 (expected complete independence of

the two electrophoretic runs).
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In our approach the two parameters ¢, and 0, are maintained identical, so that the gaussian function
presents the same uncertainty with respect to both dimensions. This is based on the assumption of a
similar variability of the two electrophoretic runs. Following this statement, the only parameter
which shall be analysed for its effect on the final resultis o= o, = 0.
A change of the value of the parameter o corresponds to a symmetrical change of the effect of each

cell on its neighbouring cells (figure 3) on both electrophoretic axes: obviously, a large value for o

shall extend the effect of each spot at a larger distance, making the whole virtual map more fuzzy.

Figure 3. Normal probability density distribution as a function of the ¢ value.

The value of the signal S, in each cell x, y, of the virtual grid is given by the sum of the effects of all

neighbour cells containing spots:

Sy = zf(xwyj’xi"y./')

i j'=ln

The summation runs on all cells of the grid, but in dependence on the value of the parameter o, only
the neighbour cells produce a significant effect. Each sample is then transformed in a virtual map
containing in each cell the sum of the influence of all the spots of the original map. These virtual
maps represent a sort of probability of the presence of a spot in each given cell of the grid, and are
used for calculating the similarity matrix between every pair of samples.

In principle this method eliminates operator intervention to match spots or clean the 2D maps.
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Figure 4. Examples of calculation of the fuzzy matrices with one and two spots in the 2D-map (o =1.0).
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3.2.3 SIMILARITY INDEX

The similarity between each pair of samples was calculated after performing a match of the potential
matrices. The match of the two virtual grids £ and / allows the computation of the common signal

(§C,), namely the sum of all the signals present in both maps, and the total signal (§7T):

SC, = min(s*,s!)

i=l,n

ST, =Y. max(S[k ,S! )

i=l,n
The similarity index can then be computed as the ratio between SC,,and 5T

SC,,
ST,

K

A similarity equal to 1 indicates that the two virtual maps are identical, since the common and total
signals are identical. The lower the similarity index, the greater the difference between common and
total signals. A value of 0 indicates that there is no match between the signals of the two maps,
which corresponds to the minimum possible similarity. The similarity matrices were calculated by an

algorithm programmed in Visual Basic 6.0 (Microsoft) and Matlab 6.1 (The Mathworks Inc.).

3.24 MULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS) models are based on the idea that a set of ordinal data can be
converted into a smaller amount of cardinal information.

Multidimensional scaling is a branch of multivariate data analysis geared towards dimensional
reduction and graphical representation of data. Given a set of # objects and a measure of their
similarity .§,, Multidimensional Scaling (MDS) consists in the search for a low dimensional space in
which the objects are represented by points in the space and such that the distances between the
points match as much as possible with the original similarities of the objects [13]. The space is
usually Euclidean, but this is not a constraint. The calculation of MDS from the 2D-map similarities

was performed by using the Kruskal iterative method [14, 15]. The configuration of points obtained
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at convergence of the iterative process, ze. when changes of the points co-ordinates do not introduce
any further decrements of the overall matching between real similarities and calculated distances, is
considered as the final solution. The search for the co-ordinates is based on the steepest descent
minimisation algorithm, where the target function is the so called Stress (S), which is proportional to
the sum of squares of differences between calculated and real distances, ze. a measure of the ability
of the configuration of points to simulate the distance matrix. MDS calculations were performed by

the STATISTICA software (Statsoft inc., Ver. 5.1).

3.2.5 STATISTICAL ANALYSIS

Once the co-ordinates have been obtained, they can be used for a multivariate statistical analysis.
The results are often self-evident, so that a visual inspection is sufficient for obtaining the final

results.

3.3 EXPERIMENTAL PROCEDURES

The Spot fuzzyfication and the Multidimensional scaling, of simulated and real samples, were performed by the

Department of Environmental and Life Sciences Technologies staff, University of Eastern Piedmont.

The method proposed has been applied on simulated and real 2D maps, the effect of parameter o

was investigated at 5 levels: 0.50, 0.75, 1.00, 1.25, 1.50.

3.3.1 SIMULATED SAMPLES

The simulated 2D maps were used for evaluating the effect on the similarity indexes of the following
parameters:

- changes in size and shape of a single spot (10 samples, figure 5a); DIM = dimension;

- changes in position of a single spot (10 samples, figure 5b); POS = position;

- the effect of two spots, with the largest that changes its size and shape (12 samples, figure 5c);

- the effect of two spots, with the smallest that changes its position (12 samples, figure 5d).

This set of 44 images was used to obtain the corresponding fuzzy maps for (40 x 40) grids. In this
case we used (40 x 40) grids instead of the 200 x 200 grids adopted for the real samples, in order to

decrease the computational effort.
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Figure 5. Simulated samples with changes in shape and size of a spot (a); changes in position of a spot (b);
changes in shape and size of the largest of two spots (c); changes in position of the smallest of two spots (d).
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3.3.2 REAL SAMPLES

The 2D maps used to test the computational method were divided into two groups:
- 1-5 HEA: 2D maps of five control rat serum samples;
- 1-5 ILL: 2D maps of five rat serum samples from nicotine-treated rats.

Figure 6 shows the ten 2-D maps.

HEA 1 HEA 2
1 =3
e [N
HEA 3 HEA 4 HEA 5
&3 e 3
= - rie-T - .

Figure 6. 2D-maps of control (HEA 1 - HEA 5) and nicotine-treated (ILL 1 - ILL 5) rat sera.

As it can be noticed, it is very difficult to distinguish the control 2D maps profile from the ones of

serum from nicotine-treated rats by a visual inspection of the image.
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In order to obtain the 2D maps presented in figure 6 five Wistar rats were treated for 14 days with a
saline solution (control samples) and the other five were treated for the same 14 days with nicotine.
The nicotine was administered subcutaneously by injecting 1ml/Kg of a 0.4 mg/ml nicotine
solution.

Blood samples were collected on the 14" day (when it is known that nicotine administration begins
to induce dependence on treated rats) on rats which were fasted for 12 hours prior to collection in
order to avoid interferences due to high concentrations of lipids in the blood. All samples were
centrifuged at 4°C to separate from each clot the serum samples (about 200 pL for each blood
sample) and they were preserved at -20°C until the analysis was performed. One hundred pL of
serum were added with 0.4 mL of a denaturing solution containing 7 M urea, 2 M thiourea, 5 mM
TBP (tributylphosphine) and 40 mM Tris. 20 mM IAA (iodoacetamide) was then added and
alkylation was continued for one hour. The samples were then submitted to dialysis in order to
eliminate the salts present in sera and then the reagents eliminated by the dialysis process were added
(7 M urea, 2 M thiourea and 20 mM Tftis); 2% CHAPS (3-[(cholamidopropyl)dimethylammonium]-1-
propane-sulfonate) was added as a surfactant.

Eighteen-cm long, pH 3-10 non-linear immobilised pH gradient strips (Amersham Pharmacia
Biotech) were rehydrated for 8 h with 450 pl. of the sample solution (final total protein
concentration of 6 mg/ml) containing traces of bromophenol blue to monitor the electrophoretic
run. Isoelectric focusing was conducted at 20°C for 60 000 Vh using a Protean IEF Cell (Bio-Rad
Laboratories, Hercules, CA, USA) with a low initial voltage and then by applying a voltage gradient
up to 10000 V with a limiting current of 50 pA/strip.

For the second dimension, the immobilised pH gradient strips were equilibrated for 27 min by
rocking in a solution containing: 375 mM Tris-HCI (pH 8.8), 6 M urea, 20% glycerol (Sigma), 2%
SDS (Fluka), 4 mM TBP, 4% w/v acrylamide. The immobilised pH gradient strips were then laid on
a 7-20% T gradient SDS-PAGE with 0.5% agarose in the cathode buffer [192 mM glycine (Sigma),
15 mM Tiis, 0.1% SDS, pH 8.3]. The anode buffer consisted of 375 mM Tris-HCI pH 8.8. Gels
were run at 10 °C and 2 mA/gel for 2 hour, 5 mA/gel for 1 hour and 10 mA/gel overnight. Gels
were stained for 20 hours with colloidal Coomassie blue G-250 [0.1% Blue G-250 (BDH Laboratory
Supplies, Poole, England), 34% v/v methanol, 3% v/v o-phosphoric acid, 17% w/v ammonium
sulphate (Sigma)] and destained in 5% acetic acid (Sigma). Images were captured with a GS-710

imaging densitometer (Bio-Rad).
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3.4 RESULTS AND DISCUSSION

The study of the effect of changes of the fuzzyfication parameters o,, 0, was performed both on
simulated and real samples. The larger the standard deviation along one of the electrophoretic
directions, the larger the uncertainty of the spot position, shape and size along the corresponding

direction. Figure 7 shows one of the real samples (HEAS) for all the levels chosen for o, and o,
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Figure 7. Fuzzy matrices of sample HEAS at the five levels chosen for o and o,
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It is evident that the spots increase their area of influence as the standard deviation increases. In this
way it is possible to simulate the low reproducibility of the experimental results, taking into account
the different reproducibility for each elution direction. In the real samples series, it is evident how
the increase of the two o values tends to mask the differences between different samples, with the
nearest spots merging one into the other. The matching of the fuzzy maps was performed for each
group of simulated and real samples and the similarity indexes obtained were analysed separately by
multidimensional scaling. The final configuration provided by MDS for the first group of simulated
samples, where a spot changes its size and shape, is reported in figure 8a. The result depends heavily

on the size of the spot for all o values. In this case the final coordinates are not very different in

dependence on the different o values, apart from a swap of DIM2 and DIM7 with o greater than
0.75. The reference spot is the DIM1, which is in a central position in all the maps. All the other
spots have been obtained by modifying the spot DIM1. The final configuration respects the
observable differences of size and shape between the samples. So DIM5 and DIMG are the nearest
to DIM1, they have both been obtained from DIM1 by eliminating an entire row or column. In all
instances, the farthest is DIM3, which represents the smallest spot. In the opposite side of the graph
are located the largest spots, obtained from DIM1 by adding some rows and/or columns. The
analysis of single spots seems to provide useful information, with a hierarchy of similarity based on
the shape and size of the spots, which is reflected on their position in the scatter plots. The result of
MDS for the second group, where a square spot changes its position, is reported in figure 8b. The
lowest value of o shows that 3 types of maps do exist: the POS9 and POS10 and a group which
includes all other maps. The former two samples are completely different from the reference
(POS1). In this case what we would expect is to obtain a representation of the spot centroids, since
they do not change in size and shape, but only in their position. Therefore the MDS results should
represent their shift along the space of the 2D-map. For low values of o the method does not
recognize that also sample POS8 is an outlier. This probably depends on the presence of some more
diverse samples which obscure POSS8 features. These highly diverse samples also affect the position
of the other ones. Better results are obtained for larger values of o; by which the 3 extreme samples
appear well separated one from another. Moreover sample POS7 assumes a central position, which
is in accordance with its equidistance from all other samples in the original map. By enlarging the
zone where all other samples are concentrated, POS4 becomes correctly placed on the opposite side

of the reference sample with respect to POS3 and POS6, while POS2 and POS5 remain very close
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to the reference sample, in agreement with their relative position in the original map. Again the

method has been able to provide the correct result. The lowest value of o does not provide optimal

results, which are instead obtained for the other values tested.
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Figure 8. Final MDS configuration for the first (a)

values.

46

and the second (b) group of simulated samples for all o



Chapter 3

The third group of simulated samples contains two spots of different size where the larger spot
changes size and shape. There is a slight change in the configuration of the points obtained from the
MDS treatment (figure 9a). The group of samples showing higher similarity becomes more compact
in the plot as the o value increases. All the scatter plots show the presence of two outliers,
represented by the two reference samples which contain only one of the two spots. The major
distance is correctly shown by the sample where the larger spot is missing. The other samples stay
apart and their position can be easily analysed zooming in the area. This allows the identification of

the rules which determine the samples position:

sample 2DIM3, where the largest spot is reduced in size is the most similar to the sample
containing only the small spot;
- 2DIMI10 sample, containing the largest large spot is the most similar to the sample
containing only the large spot;
- the central position is occupied by sample 2DIM1, which is central since all other samples
have been derived from it by changing the size and shape of the largest spot;
- the larger the distance from this sample, the larger the change in size of the spot.
Also in this case it is possible to sort the samples with respect to their similarity, by simply analysing

their coordinates in the scatter plot. The low value of o provides a less defined result. Probably the

other configurations (o= 0.75, 1.0, 1.25, 1.5) represent better solutions since the difference between
the two “single spot” references and the others are better described.

In the case of the fourth group, where the position of the small spot is changed along the samples,
there is not a large difference by varying the o values (figure 9b). The sample containing only the
small spot stays aside and represents an outlier. The other reference, where there is only the large
spot, is contained among the others, probably because of the higher “weight” of the large spot in the
calculation. In all the scatter plots, the x-axis (root 1) takes into account the change in position of the
small spot. The sample 2POS1 is in a central position and represents the starting sample for all
position changes. The most distant samples are 2POS4 and 2POS3 on one side; these are indeed the
most different samples with respect to 2POS1. On the other side, the most distant samples are
2POS5 and 2POS7 where the small spot has moved in the opposite direction with respect to 2POS4
and 2POS3.
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Figure 9. Final MDS configuration for the third (a) and the fourth (b) group of simulated samples for all o

values.
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The last calculation was performed on the real samples (figure 10).
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Figure 10. Final MDS configuration for the real samples for all o values.
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From figure 6 it is evident that the 2D-maps are very different one from each other and it would be

very difficult, from a simple visual inspection, to state their similarity pattern. MDS provided a clear
scheme which changes slightly passing from o = 0.5 to the other values. In this case the separation
of the two classes of rats, is obtained with all the o values. In all the cases, it can be observed that it
is possible to separate the two classes by mean of only one dimension. Even if the separation is
successful for all the o values considered, it is more effective for the large ones. The best value of
the fuzzyfication parameter seems to be o = 1.25, which allows an optimal separation of the two

classes of samples.

3.5 CONCLUDING REMARKS

A new method for the statistical analysis of sets of 2-D maps, in proteome research, has been
developed [16]. The method involves several steps, map digitalisation, fuzzyfication, calculation of a
similarity matrix and a multidimensional scaling analysis, and has been applied satisfactorily to the
analysis of both simulated and real samples. The analysis of the simulated maps allows an
exploration of the effect of the o parameter, Ze. the effect of changing the uncertainty along each
electrophoretic direction. The application of the method to a complex dataset constituted by several
2D maps of sera from rats treated with nicotine and controls has shown that this method allows the
discrimination between the two classes.

The final aim of the method based on MDS is the diagnosis of the patient condition from a global
analysis of a 2D map, so no information is being acquited on the spots responsible for its

classification.
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CHAPTER 4:

NEW STATISTICAL TOOLS FOR
COMPARATIVE PROTEOMICS (II):
THREE WAY PRINCIPAL COMPONENT
ANALYSIS

4.1 INTRODUCTION

In order to develop a new statistical tool for comparative proteomics, in this section three-way
Principal Component Analysis has been applied to 2D maps to permit the identification of the
different classes of samples present in a dataset. The developed method has been applied to 2D
maps of rat sera, constituted by 5 samples of healthy Wistar rat sera and 5 samples of nicotine-
treated Wistar rat sera. The method proved to be successful in the identification of the classes of
samples present in both the groups of 2D-PAGE images and it allowed to identify the regions of the
two-dimensional maps responsible for the differences occurring between the two classes of rat sera
samples. Some studies already present in the literature concern the development of methods for the
classification of images based on pixel-data [1]; Principal Component Analysis (PCA) [2-5] has been
applied to the study of DNA and RNA fragments of several biological systems [6-9] and to the
characterisation of proteomic patterns of different classes of tissues [10-15]. These multivariate
methods require the previous analysis of the proteomic pattern images by standard softwares (i.e.
Melanie IIT or PD-Quest) to identify the spots, so they present the disadvantage of being submitted
to human choice for maps alignment. To avoid this disadvantage, in the approach presented here, all
the maps belonging to the same type of sample are maintained during the analysis and the
comparison is performed on each sample. In this way, the information about the variability and the
reproducibility of the 2D-PAGE maps is maintained and the comparison is performed on all the real
samples together and not on “synthetic”” maps.

The 2D-PAGE images are first digitalised, transforming each image in a grid containing in each cell
the value of the average optic density revealed in the correspondent area of the map. In this way, a

three-mode dataset is obtained, with the three modes being the isoelectric point, the molecular mass
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and the samples respectively. The digitalised images thus obtained are then analysed by three-way
PCA.

4.2 THEORY

The method applied for the comparison of 2D-PAGE maps belonging to different classes, consists
of three steps:

1. digitalisation of the image. Each image is digitalised producing a grid of (50x50) cells: each cell of the
grid contains a value ranging from O to 1, according to the intensity of the signal in the
correspondent position.

2. data transformation. Data transformations have to be applied to the dataset in order to scale all the
samples and make them comparable; maximum scaling was chosen as the most suitable for the
dataset under investigation.

3. three-way PCA. This multivariate technique is applied to the digitalised and scaled images in order
to identify the classes of samples present in the dataset and to identify the zones of the maps
responsible of the differences occurring between the classes. The maps rebuilt by using the relevant
factors are compared in order to identify the differences occurring between the centroids of the two

classes of healthy and pathological protein patterns.

4.2.1 DIGITALISATION

A 2D-PAGE slab appears as a transparent polymeric matter with the separated proteins spread all
over it as coloured spots. The revelation of the spots is performed, in general, with a solution of an
organic colouring agent (Coomassie Blue) or by deposition of silver on the protein surface: the use
of these staining solutions generates a colouring intensity which is proportional (within given limits)
to the protein concentration. Fach 2D-PAGE map is previously scanned with a GS-710
densitometer (Bio-Rad), which transforms the 2D-PAGE in an image (200 x 200 pixels) in which
each pixel corresponds to the value of the average optic density in the correspondent area.

The scanned images are then transformed in a grid of 50 x 50 cells, in which each cell contains a
value ranging from 0 to 1. Each numerical value corresponds to the colour intensity of the image
calculated by averaging the intensities of the pixels which are contained in the correspondent cell.
The values smaller than 0.4 were cut off and substituted with null values in order to eliminate the

information about the colour intensity of the background.
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The choice of a 50 x 50 grid is not a constraint but it was suggested by computational and memory

requirements.

4.2.2 DATA TRANSFORMATION

A normalisation is essential before performing three-way PCA, in order to make all the samples
comparable with each other. The chosen transformation is maximum scaling: the digitalised 2D-
PAGE maps are scaled one at a time to the maximum value for each map, according to the

following mathematical expression:

neD e
where x,(7,7) = value of the cell in (7;) position in the £-th 2D map;

and max(x,) = the maximum value in all the cells of the 4-th 2D map.

By applying such a transformation to each two-dimensional map, the maximum signal intensity value
of every 2D-PAGE map becomes a unit value; all the samples are thus ranged from 0 to 1 and the
dataset becomes independent from the intensity differences due to the staining step. This scaling is
suggested by the fact that the large variability of the staining procedure causes a “systematic” error
(i.e. maps being consistently darker or lighter). If not removed, this error would account for the

major amount of the variation.

4.2.3 THREE-WAY PRINCIPAL COMPONENT ANALYSIS

Three-way Principal Component Analysis (Three-way PCA), based on the Tucker-3 model [16-19],
has been used for the identification of the classes of samples present in the 2D maps dataset of rat
sera. The interest of three-way PCA is that it allows to take into account the three-way structure of
the data set which can be considered as a parallelepiped of size I x | x K (conventionally defined as
objects, variables and conditions), where, in our case: I is the number of rows of the grid (the x
coordinates, i.e. molecular mass), | is the number of columns of the grids (the y coordinates, i.e. pH),
and K is the number of samples. The three-way PCA is based on the fact that the observed modes I,
J, K can be synthesized in more fundamental modes, each element of a reduced mode expressing a

particular structure existing between all or a part of the elements of the associated observation mode.
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The final result is given by three sets of loadings together with a core array describing the
relationship among them. Each of the three sets of loadings can be displayed and interpreted in the
same way as a score plot of standard PCA. Mathematically, this is expressed as follows:

9 R
Xijk :z ZaipquCkr & par +é6ijk

P
p=lg=1 r=1

where x;, = denotes the elements of the initial matrix X,

ay, b, and ¢, = denote reduced elements of the component matrices A, B and C of order I x P, [ x O
and K x R respectively,

&, — denotes the elements (p, g, 7) of the P x 0 x R core array G,

¢;, = error term for element x;, and is an element of the I x | x K array E¥.

In the case of a cubic core array (i.e., if P = Q = R), a series of orthogonal rotations can be
performed on the three spaces of the three modes, by looking for the common orientation for which
the core array is as much as possible body-diagonal. If this condition is sufficiently achieved, i.e., if

the elements g,,,, 2,5, ... are the only elements of the core matrix being significantly different from 0,

then the rotated sets of loadings can also be interpreted jointly by overlapping them.

4.3 EXPERIMENTAL PROCEDURES

4.3.1 SAMPLE PREPARATION

The investigated dataset consists of 10 samples belonging to two different groups:

5 samples of Wistar rat serum pertaining to healthy individuals;

5 samples of Wistar rat serum belonging to nicotine treated individuals.

The 10 2D-PAGE maps obtained are represented in figure 1. Looking at the 2D-PAGE images, it is
not very easy to distinguish the healthy individuals from the nicotine treated ones by a visuals
inspection of the image. Moreover, the 2D-maps belonging to the same group show a large
variability of the spots number, position, shape and size.

In order to obtain the samples for the two dimensional electrophoresis analysis five Wistar rats were
treated for 14 days with a saline solution (control samples) and the other five were treated for the

same 14 days with nicotine. The nicotine was administered subcutaneously by injecting 1ml/Kg of a
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0.4 mg/ml nicotine solution. Blood samples were collected on the 14" day (when it is known that
nicotine administration begins to induce dependence on treated rats) on rats which were fasted for
12 hours prior to collection in order to avoid interferences due to high concentrations of lipids in the
blood. All samples were centrifuged at 4°C to separate from each clot the serum samples (about 200
ul for each blood sample) and they were preserved at -20°C until the analysis was performed. One
hundred pL of serum were added with 0.4 mL of a denaturing solution containing 7 M urea, 2 M
thiourea, 5 mM TBP (tributylphosphine) and 40 mM Tris. 20 mM IAA (iodoacetamide) was then
added and alkylation was continued for an hour. The samples were then submitted to dialysis in
order to eliminate the salts present in sera and then the reagents eliminated by the dialysis process
were restored (7M urea, 2M thiourea and 20mM Trs); 2% CHAPS (3-
[(cholamidopropyl)dimethylammonium]-1-propane-sulfonate) was added as a surfactant.
Eighteen-cm long, pH 3-10 non-linear immobilised pH gradient strips (Amersham Pharmacia
Biotech) were rehydrated for 8 h with 450 pL of the sample solution (final total protein
concentration of 6 mg/ml) containing traces of bromophenol blue to monitor the electrophoretic
run. Isoelectric focusing was conducted at 20°C for 60 000 Vh using a Protean IEF Cell (Bio-Rad
Laboratories, Hercules, CA, USA) with a low initial voltage and then by applying a voltage gradient
up to 10000 V with a limiting current of 50 pA/strip.

For the second dimension, the immobilised pH gradient strips were equilibrated for 27 min by
rocking in a solution containing: 375 mM Tris-HCI (pH 8.8), 6 M urea, 20% glycerol (Sigma), 2%
SDS (Fluka), 4 mM TBP, 4% w/v actylamide. The immobilised pH gradient strips were then laid on
a 7-20% T gradient SDS-PAGE with 0.5% agarose in the cathode buffer [192 mM glycine (Sigma),
15 mM Tris, 0.1% SDS, pH 8.3]. The anode buffer consisted of 375 mM Tris-HCI pH 8.8. Gels
were run at 10 °C and 2 mA/gel for 2 hour, 5 mA/gel for 1 hour and 10 mA/gel overnight. Gels
were stained 20 hours with colloidal Coomassie blue G-250 [0.1% Blue G-250 (Sigma), 34% v/v
methanol, 3% v/v o-phosphoric acid 17% w/v ammonium sulphate (Sigma)] and destained in 5%

acetic acid (Sigma). Images were captured with a GS-710 imaging densitometer (Bio-Rad).
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Figure 1. 2D-PAGE maps of the 10 rat serum samples.

4.4 RESULTS AND DISCUSSION

Data transformation and Three-way PCA were performed by the Department of Environmental and Life Sciences
Technologies staff, University of Eastern Piedmont.

4.4.1 DATA TRANSFORMATION

When looking at the original 2D-PAGE images in Figure 1, sample HEA2 appears shifted with
respect to the other samples of the same class. This peculiarity of sample HEA2 would lead to an
incorrect analysis with three-way PCA because the major amount of explained variance would be
probably led by this characteristic. Sample HEA2 was then shifted and matched to the other
samples belonging to the same class.

Before performing 3-way PCA, a maximum scaling procedure was applied to the dataset; this scaling
technique produces some changes in the dataset: in the maximum-scaled patterns, some minor spots
can be detected with respect to the original ones; in addition, maximum scaling is fundamental for
obtaining a complete independence of the analysis from the staining step, often scarcely

reproducible.
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4.4.2 THREE-WAY PCA ON THE NORMALISED DATASET

Three-way PCA performed on the normalized dataset gave the results represented in Figures 2 and
3 (two factors were retained for each mode); samples from 1 to 5 correspond to the control rat

serum samples, while samples from 6 to 10 correspond to the nicotine-treated rat sera. The first two

factors explain 59.8% of the total variance.
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Figure 2. Plots of the three modes for the first entry of the core matrix giq1.
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Figure 3. Plots of the three modes for the second entry of the core matrix gzz.

After body diagonalization [19] the following core matrix is obtained; the cubic core matrix is

reported according to the following unfolding

’gm Biz1 Az glzz]
Ba11 Bzt B2z B

1276 —0.22 013  5.10
0.61  0.99 244 1.5

Since it is not super-diagonal, the plots of objects, variables and conditions can be interpreted jointly

only for the first factor (the term g;,, being by far the largest one).
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The analysis is performed on one series of combinations at a time: this corresponds to examining
one entry of the core matrix at a time. The first one, g;, explains 51.6% of the total variance. The
three plots, one for each mode, are represented in Figure 2. The first axis of the mode of conditions
clearly discriminates samples 6 and 7 (ILL1 and ILL2) from the others; looking at the plots of the
other two modes, it is possible to state that these two samples are characterized by larger values of
the objects around 11 and 26 and of the variables around 21 and, to a lesser extent, around 10. By
looking at the maps, it is easy to see that these samples are characterized by very intense spots in the
rows around 11 and 26 (corresponding to pH 4.5-5 and 6-7) and in the columns around 21

(molecular mass 100-50 KDa).

4.4.3 DIFFERENCE ANALYSIS

The fundamental aim of the present study is to identify the regions of the maps responsible for the
discrimination of the two classes of samples: the control and the nicotine-treated ones. The
identification of the differences occurring between the two classes of samples is performed by using
the centroids of each class, in the space defined by variables and objects obtained from three-way
principal component analysis. These centroids represent the average information concerning control
and treated individuals contained in the first two factors which permit the class discrimination. The
centroids can be re-projected in the original space, thus obtaining the corresponding 2D-map images
containing only the information accounted for by the first two 3-way factors. The images rebuilt in
this way can be compared for identifying the discriminant regions of the 2D-maps. This procedure
allows a sort of filtering of the useful (discriminant) information contained in the 2D-maps.

The centroid of the control class is obtained on the basis of all the 5 original maps belonging to this
class, while the centroid of the nicotine-treated class is calculated on the basis of only the three
samples (ILL3, ILL4, ILLL5) which appear the most different from the control class, as pointed out
by three-way PCA. The two re-projected maps and their difference are represented in figure 4(a). In
figure 4(b), the positive values (towards red) refer to regions which characterise the control sample,
while the negative ones (towards blue) refer to regions which characterise the treated specimens. The
control samples appear thus richer in spots than the nicotine-treated ones and the two classes show
differences due both to the presence/absence of spots and to different relative intensities of the

spots.
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Control class centroid

Figure 4. Contour plots of the centroids for the control and nicotine-treated classes (a) and

correspondent map of the differences (b).
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4.5 CONCLUDING REMARKS

Three-way PCA was performed on 10 samples of rat sera. Maximum scaling was applied to each
dataset before performing three-way PCA in order to eliminate the influence of the staining
procedure on the statistical analysis.

The applied method turned out to be a successful tool for the discrimination of the classes of
samples present and for the identification of the zones responsible for the differences occurring
between the samples belonging to the different classes. This last goal was realised by “differences
analysis”, which allowed the identification of the regions that characterise each class of samples for
both the considered dataset. It is necessary to stress that this method [20] represents a preliminary
approach to the problem of comparing 2D-PAGE maps belonging to different classes: further

studies are necessaty before being able to use this method for diagnostic/prognostic putposes.
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CHAPTER 5

PANCREATIC ADENOCARCINOMA:
PROTEOMICS ANALYSIS OF
EPIGENETIC EVENTS

5.1 PANCREATIC ADENOCARCINOMA

Pancreatic adenocarcinoma is the fourth leading cause of cancer death in the United States [1]. With
a 5-year survival rate of only 3% and a median survival of less than 6 months, a diagnosis of
pancreatic adenocarcinoma carries one of the most dismal prognoses in all of medicine [2]. Due to a
lack of specific symptoms and limitations in diagnostic methods, the disease often eludes detection
during its formative stages. For the 15-20% of patients who undergo potentially curative resection,
the 5-year survival is only 20% [3]. Some improvements in surgical outcome occur in patients who
also receive chemotherapy and/or radiotherapy, although the impact on long-term survival has been
minimal owing to the intense resistance of pancreatic adenocarcinoma to all extant treatments. It is
thus evident the need to conduct a more penetrating analysis of pancreatic cancer biology. The
identification of signature gene mutations in pancreatic adenocarcinoma was recognized as a
valuable starting point, providing a conceptual framework to guide the future analysis of complex
aspects of this disease. How these genetic changes translate into the classical biological features of
pancreatic cancer cells stands as a key area for increased active investigation. Pancreatic
adenocarcinoma is generally thought to arise from pancreatic ductal cells; however, this remains an
area of ongoing study [4]. The etiology of pancreatic adenocarcinoma remains poorly defined,
although important clues of disease pathogenesis have emerged from epidemiological and genetic
studies. Pancreatic adenocarcinoma is a disease that is associated with advancing age [5], rare before
the age of 40, it culminates in a 40-fold increased risk by the age of 80. Environmental factors might
modulate pancreatic adenocarcinoma risk [5]. On the genetic level, numerous studies have
documented an increased risk in relatives of pancreatic adenocarcinoma patients (approximately
three fold), and it is estimated that 10% of pancreatic cancers are due to an inherited predisposition
[6]. As with most cancer types, important insights have emerged from the study of rare kindreds that

show an increased incidence of pancreatic adenocarcinoma. However, unlike familial cancer
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syndromes for breast, colon and melanoma, pancreatic adenocarcinoma that is linked to a familial
setting has a lower penetrance (<10%) and maintains a comparable age of onset to sporadic cases in

the general population.
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Figure 1. Anatomy of the pancreas. The pancreas is comprised of separate functional units that regulate two
major physiological processes: digestion and glucose metabolism. The exocrine pancreas consists of acinar
and duct cells. The acinar cells produce digestive enzymes and constitute the bulk of the pancreatic tissue.
They are organized into grape-like clusters that are at the smallest termini of the branching duct system. The
ducts, which add mucous and bicarbonate to the enzyme mixture, form a network of increasing size,
culminating in main and accessory pancreatic ducts that empty into the duodenum. The endocrine pancreas,
consisting of four specialized cell types that are organized into compact islets embedded within acinar tissue,
secretes hormones into the bloodstream. The o- and B-cells regulate the usage of glucose through the
production of glucagon and insulin, respectively. Pancreatic polypeptides and somatostatin that are produced
in the PP and d-cells modulate the secretory properties of the other pancreatic cell types. a) Gross anatomy
of the pancreas. b) The exocrine pancreas. c) A single acinus. d) A pancreatic islet embedded in exocrine
tissue.
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Figure 2. Genetic progression model of pancreatic adenocarcinoma. Pancreatic intraepithelial neoplasias
(PanINs) seem to represent progressive stages of neoplastic growth that are precursors to pancreatic
adenocarcinomas. The genetic alterations documented in adenocarcinomas also occur in PanIN in what
seems to be a temporal sequence, although these alterations have not been correlated with the acquisition of
specific histopathological features. The stage of onset of these lesions is depicted. The thickness of the line
corresponds to the frequency of a lesion.

A careful molecular and pathological analysis of evolving pancreatic adenocarcinoma has revealed a
characteristic pattern of genetic lesions. The pancreatic-duct cell is generally believed to be the
progenitor of pancreatic adenocarcinoma. The increased incidence of abnormal ductal structures
(now designated pancreatic intraepithelial neoplasia, PanIN) [5, 7] in patients with pancreatic
adenocarcinoma, and the similar spatial distribution of such lesions to malignant tumours, are
consistent with the hypothesis that such lesions might represent incipient pancreatic
adenocarcinoma. Histologically, PanINs show a spectrum of divergent morphological alterations
relative to normal ducts that seem to represent graded stages of increasingly dysplastic growth [4]
(tigure 2). Cell proliferation rates increase with advancing PanIN stages, which is consistent with the
idea that these are progressive lesions [7]. A growing number of studies have identified common

mutational profiles in simultaneous lesions, providing supportive evidence of the relationship
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between PanINs and the pathogenesis of pancreatic adenocarcinoma. Specifically, common
mutation patterns in PanIN and associated adenocarcinomas have been reported for KRAS and for
CDKN2A [8]. In addition, similar patterns of loss of heterozygosity (LOH) at chromosomes 9q,17p
and 18q (harbouring CDKN2A, TP53 and SM.AD4, respectively) have been detected in coincident
lesions, and studies have consistently shown an increasing number of gene alterations in higher-

grade PanINs [9-12].

5.2 EPIGENETIC REGULATION OF GENES

Knowledge of the molecular events that occur during the early stages of cancer has advanced
rapidly. The initiation and development of cancer involves several molecular changes, which include
epigenetic alterations. Epigenetics is the study of modifications in gene expression that do not
involve changes in DNA nucleotide sequences. Modifications in gene expression through
methylation of DNA and remodelling of chromatin via histone proteins are believed to be the most
important of the epigenetic changes. The study of epigenetics offers great potential for the
identification of biomarkers that can be used to detect and diagnose cancer in its earliest stages and
to accurately assess individual risk.

Epigenetics has an important role in biological research and affects many different areas of study
including cancer biology [13, 14], viral latency [15-18], activity of mobile elements [19], somatic gene
therapy [20-25], cloning and transgenic technologies, genomic imprinting [26, 27],and developmental
abnormalities [26, 27]. The definition of epigenetics varies among investigators. One definition
describes epigenetics as the study of mitotically heritable changes in gene expression that are not
caused by alteration of the DNA sequence [28]. Another view is that epigenetics concerns the
inheritance of information on the basis of differential gene expression, whereas genetics focuses on
the information inherited through gene sequence [29]. The mechanism of inheritance for epigenetic
modification has yet to be identified. However, regardless of the definition used, the most important
difference between an epigenetic mechanism and a genetic mechanism is that epigenetic changes can
be reversed by chemical agents (therapeutic interventions).

Various factors can modify mammalian cells resulting in an epigenetically transformed phenotype,

without changing the DNA sequence information of the cell, including radiation, tobacco smoke,
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stress, hormones (such as oestradiol), base analogues, cadmium, arsenic, nickel, reactive oxygen
species, and various other chemicals.
Two major steps in the epigenetic regulation of gene expression are the deacetylation of histones,

causing a change in the structure of chromatin, and the methylation of the promoter region of the

gene.

Y RMA polymerase
transcription factors
acetylated histones

OiA methyltransterase
Histone deacetylasa
methylated DA
Chromatin remodelling
proteins
deacetylated histones
Figure 3. Epigenetic modifications that abolish gene expression. Top panel — open chromatin is

characterized by non-methylated DNA and histones with acetylated tails. This allows the assembly of
transcription factors and transcription by RNA polymerase. Middle panel — DNA methyltransferase activity
results in the methylation of DNA. This may directly block binding by transcription factors and prevent
transcription. It may also recruit methyl-binding domain proteins that have associated histone deacetylases.
Bottom panel — DNA methylation and histone deacetylation result in the condensation of chromatin into a
compact state that is inaccessible by transcription factors.

5.2.1 HISTONE DEACETYLATION

The DNA of all eukaryotes is packaged into chromatin, which is made up of histone proteins
around which the DNA is coiled. Histones have amino-termial extensions called ‘tails’, which
undergo many covalent modifications that are important in both the organisation of chromosomes
and the regulation of specific genes. Histone methyltransferases direct site-specific methylation of

aminoacid residues such as Lys4 and Lys9 in the tail of the histone protein H3. Methylation of Lys4
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is important for the maintenance of the structure of euchromatic domains, which are diffuse areas of
chromatin where genes are freely accessible and generally active. By contrast, methylation of H3
Lys9 is associated with the initiation and propagation of heterochromatic domains where chromatin
is densely packed and the genes are generally inactive [30]. The dense, heterochromatic domains are
flanked by inverted repeats that act as boundary elements which prevent the tightly packed structure
spreading to neighbouring euchromatic regions.

There is evidence that histone proteins and their associated covalent modifications contribute to a
mechanism that can alter the structure of chromatin. Such changes could lead to inherited
differences in transcriptional activation (or inactivation) states or to the stable propagation of
chromosomes by a specialised centromere higher-order structure. Histone acetylation is a dynamic
process that is regulated by two classes of enzymes: the histone acetyltransferases and histone
deacetylases. Although many recent studies have focused on promoter-specific acetylation and
deacetylation, these mechanisms are part of a broader, more dynamic acetylation mechanism that
profoundly affects many nuclear processes. During mitosis, histone acetyltransferases and
deacetylases are unable to acetylate or deacetylate chromatin in situ despite remaining catalytically
active when isolated from mitotic cells and assayed 7 vitro. Thus, these enzymes do not stably bind
to the genome to function as an epigenetic mechanism of selective postmitotic gene activation.
However, evidence does support a role for spatial organisation of these enzymes within the nucleus.
Furthermore, their relation to euchromatin and heterochromatin postmitotically in the reactivation

of the genome also is important for the active organised structure.

5.2.2 DNA METHYLATION

In the normal mammalian genome, methylation occurs only at cytosines 5' to guanosines at CpG
dinucleotides. Many CpG dinucleotides have been depleted from the eukaryotic genome throughout
evolution by spontaneous deamination. The remaining CpGs have a very high frequency of
methylation, which facilitates changes in chromatin structure that block the transcription of
particular genes, by rendering them inaccessible to cellular transcription machinery. However,
throughout the genome, short stretches of CpG-rich DNA exists. These regions, known as CpG
islands, are not highly methylated despite being rich in cytosine and guanine, and are generally
located in the promoter regions of “housekeeping” genes which are essential for cell function. The
lack of methylation in promoter regions may be a prerequisite for active transcription of the genes

under their control.

70



Chapter 5

Many tumour supressor genes are inactivated, in particular tumour types have highly methylated
promoters; under normal conditions, the promoter regions are unmethylated and the gene is
transcribed [31-37]. Whether methylation is the initiating or secondary event in gene silencing has
not been established. However, irrespective of its role in the initiation of cancer development,
methylation is an important marker for epigenetically mediated loss-of-gene function. Furthermore,
these events are of comparable importance to gene mutations for the initiation and propagation of
carcinogenesis. Although the functional importance of hyper-methylation is apparent, the molecular
mechanisms involved are still unclear. The integration of DNA methylation with chromatin
organisation and the regulation of histone acetylation and deacetylation may be important parts of
the overall effect.

Furthermore several studies have shown low DNA methylation of proto-oncogenes in cancer cells
[38-40]. For example, low DNA methylation of Raf, ¢-Mye, ¢-Fos, ¢-H-Ras, and ¢-K-Ras associated with
neoplasia have been reported in rodent liver [40, 41]. Although some studies have identified hypo-
methylation of RAS in human cancers [42-44], other studies do not support these findings and some
researchers have suggested that DNA methylation is irrelevant to RAS expression [38, 45]. A
significant inverse correlation was found between methylation and the degree of expression of the
BCI -2 gene in human B-cell chronic lymphocytic leukaemia [39]. Hypomethylation of the third exon
of the --MYC gene has been reported in a various human cancers [46].

Another emerging concept is that deacetylation of histone proteins is the first step in the recruitment
of methyltransferase to the CpG islands, resulting in hypermethylation of the promoter.

For cancer prevention strategies to be developed, factors that regulate deacetylation have to be
identified. Extensive research is needed in this area, especially because targets for chemoprevention
could emerge from these studies. Furthermore, epigenetic regulations occur eatly in cancer
progression, thus providing an opportunity for the development of interventions to prevent further

progression.
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5.3 HISTONE DEACETYLATION (I): PROTEOMIC
PROFILING OF PANCREATIC DUCTAL CARCINOMA
CELL LINES TREATED WITH TRICHOSTATIN-A

5.3.1 INTRODUCTION

The epigenetic events may be modulated by pharmacological intervention and several drugs have
entered into clinical trials during the last decade [47, 48]. Those compounds that interfere with the
acetylation/deacetylation pattern of histones seem to show particular promise.

Chromatin modifying factors may be involved in cell proliferation and cancer [49, 50]. Generally,
transcriptional efficiency is correlated with the relative activities of histone acetyltransferases (HAT)
and histone deacetylases (HDAC). Acetylation is believed to separate the basic N-termini of histones
from DNA that then becomes more accessible to transcription factors [51, 52]. Thus, histone
acetylation leads to gene activation, while histone deacetylation leads to a tighter histone-DNA
interaction and, accordingly, to gene repression. The role of histone acetylation and deacetylation in
the genesis of cancer has been shown in recent studies [53]. During the last decade, a number of
HDAC inhibitors have been identified that induce cultured tumor cells to undergo growth arrest,
differentiation and/or apoptotic cell death [54]. These agents also inhibit the growth of cancer cells
in animal models and several agents have been shown to slow tumor growth in animals at nontoxic
doses. It has also been suggested that the action of HDAC inhibitors on gene expression is selective
and restricted to a relatively small number of genes based on the results using differential display
analysis of tumor cells cultured with trichostatin-A (TSA). In that study, only the expression of a
small number of genes (8 of 340) was altered compared with untreated cells. Among these, two key
genes involved in cell proliferation, namely c-zyc and p27, were shown to have decreased or
increased expression, respectively.

The present data demonstrate that the growth of the human pancreatic adenocarcinoma cell line
Paca44 is strongly inhibited by TSA at submicromolar concentrations, and that the cellular
mechanisms underlying this effect consists in cell cycle arrest at the G2 phase and apoptotic cell
death. In order to understand these effects, the differential protein expression profiles of the
pancreatic adenocarcinoma cell line Paca44, following treatment with TSA (a potent inhibitor of

histone deacetylase), was investigated by using proteomics tools.
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5.3.2 EXPERIMENTAL PROCEDURES

Cell colture and cell proliferation assay were performed by Department of Neurological and 1 isual Sciences staff,
Section of Biochemistry, University of 1 erona.

5.3.2.1 Cells and growth conditions

Paca44 human adenocarcinoma cells were grown in RPMI 1640 supplemented with 20 mM
glutamine and 10% FBS (BioWhittaker, Italy) and were incubated at 37°C with 5% CO.,. Cells were
seeded at a density of 25x10°/cm”.

5.3.2.2 Cell proliferation assay

Cells were plated in 96-well cell culture plates at subconfluency (4x10° cells/well) and after 24 h
treated with 0.2 pM TSA for 40 h. Cells were stained with Crystal Violet (Sigma), solubilized in PBS
with 1% SDS, and measured photometrically (As;,.) to determine cell viability. Three independent

experiments were performed.

5.3.2.3 Cell cycle analysis

Cell cycle distribution was analyzed by using propidium iodide (PI)-stained cells. Briefly, 10° cells
were treated with 0.2 uM TSA for 48 h, washed with PBS, incubated with 0.1% sodium citrate
dihydrate, 0.1% Triton X-100, 200 pg/mL RNase A, 50 pg/mL propidium iodide (Roche Molecular

Biochemicals) and analyzed on a FACScalibur flow cytometer (Becton Dickinson). The percentage

of cells in the various stages of the cell cycle was determined using the ModFitLT software program.

5.3.2.4 Apoptosis detection

Apoptosis was assessed by detection of histone-associated DNA fragments of cells treated for 40 h
with 0.2 uM TSA. Cells were analyzed using the Cell-Death Detection ELISA™ assay (Roche
Molecular Biochemicals). The assay is based on a quantitative sandwich-enzyme-immunoassay
principle using monoclonal antibodies anti-histone-biotin and anti-DNA-peroxidase (POD). POD
was determined photometrically (Ays,m — Ayoram) With ABTS as substrate. This allows the apoptotic

determination of the enrichment of nucleosomes in the cytoplasmic fraction of cell lysates.
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5.3.2.5 Two-dimensional gel electrophoresis

Protein extraction from cells untreated and treated with 0.2 pM TSA for 18 h was performed with
lysis buffer (40 mM Tris, 1% NP40, 1 mM Na;VO,, 1 mM NaF, 1 mM PMSF, protease inhibitor
cocktail). Cells were left in lysis buffer for 30 min in ice. After centrifugation at 14.000 x g at 4°C
(for removal of particulate material) the protein solution was collected and stored at -80°C until
used. Seventeen cm long, pH 3-10 immobilized pH gradient strips (IPG; Bio-Rad Labs., Hercules,
CA, USA) were rehydrated for 8 h with 450 pl of 2-D solubilizing solution (7 M urea, 2 M thiourea,
5mM tributylphosphine, 40 mM Tris and 20 mM iodoacetamide) containing 2 mg/mlL of total
protein from Paca 44 cells. Isoelectric focusing (IEF) was carried out with a Protean IEF Cell
(Biorad, Hercules, CA, USA), with a low initial voltage and then by applying a voltage gradient up to
10000 V with a limiting current of 50 mA /strip. The total product time x voltage applied was 70000
Vh for each strip and the temperature was set at 20°C. For the second dimension, the IPGs strips
were equilibrated for 26 min by rocking in a solution of 6 M urea, 2% SDS, 20% glycerol, 375 mM
Tris-HCI, pH 8.8. The IPG strips were then laid on an 8-18%T gradient SDS-PAGE with 0.5%
agarose in the cathode buffer (192 mM glycine, 0.1% SDS and Tris to pH 8.3). The anodic buffer
was a solution of 375 mM Tris HCI, pH 8.8. The electrophoretic run was performed by setting a
current of 2 mA for each gel for 2 hours, then 5 mA/gel for 1 h, 10 mA/gel for 20 h and 20 mA/gel
until the end of the run. During the whole run the temperature was set at 11°C. Gels were stained
overnight with Colloidal Coomassie blue (0.1% Coomassie Brilliant Blue G, 34% v/v methanol, 3%
v/v phosphoric acid and 17% w/v ammonium sulphate), while destaining was performed with a

solution of 5% acetic acid until a clear background was achieved.

5.3.2.6 Protein pattern analysis

The 2-DE gels were scanned with a GS-710 densitometer (Bio-Rad), and analyzed with the software
PDQuest Version 6.2 (Bio-Rad, Laboratories, Hercules, CA, USA). A match set was created from
the protein patterns of the two independent cellular extracts (control cell line, TSA-treated cell line).
A standard gel was generated out of the image with the highest spot number. Spot quantities of all
gels were normalized to remove non expression-related variations in spot intensity, so the raw
quantity of each spot in a gel was divided by the total quantity of all the spots in that gel that have
been included in the standard. The results were evaluated in terms of spot OD (optical density).

Statistical analysis of PDQuest allowed the study of proteins that were significantly increased or
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decreased in TSA-treated cell line. 51 spots were found to be differently expressed in TSA-treated
Paca 44, of which 29 spots were up-regulated (with a significance level o of 0.05) and 22 spots
down-regulated (with a0 = 0.05).

5.3.2.7 Protein identification by mass spectrometry

The spots of interest were carefully excised from the gel with a razor blade, placed in Eppendorf
tubes, and destained by washing three times for 20 min in 50% v/v acetonitrile, 2.5 mM Ttris, pH
8.5. The gel pieces were dehydrated at room temperature and covered with 10 plL of trypsin (0.04
mg/ml) in Tris buffer (2.5 mM, pH 8.5) and left at 37°C overnight. The spots wete crushed and
peptides wete extracted in 15 pL of 50% acetonitrile, 1% v/v formic acid. The extraction was
conducted in an ultrasonic bath for 15 min. The sample was centrifuged at 8000 x g for 2 min, and
the supernatant was collected.

The extracted peptides were loaded onto the target plate by mixing 1ul of each solution with the
same volume of a matrix solution, prepated fresh every day by dissolving 10 mg/ml cyano-4-
hydroxycinnamic acid in acetonitrile/ethanol (1:1 viv), and allowed to dry. Measurements were
performed using a TofSpec 2E MALDI-TOF instrument (Micromass, Manchester, UK), operated in
reflectron mode, with an accelerating voltage of 20 kV. Peptide masses were searched against
SWISS-PROT, TrEMBL and NCBInr databases by utilizing the ProteiLynx program (Micromass)
(http:/ /www.expasy.ch/tools/peptidenthtml) or NCBInr database by using the ProFound
(http://129.85.19.192) program (http://prospector.ucsf.edu/ucsthtml3.4/msfit.htm).

5.3.3 RESULTS

Fig. 4 shows that TSA is able to inhibit proliferation of Paca44 cells (Fig. 4a) via mechanisms
involving apoptotic cell death (Fig. 4b) and cell cycle arrest at the G2 phase (Fig. 4c).
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Figure 4. Effect of 0.2 pM TSA on growth of Paca 44 adenocarcinoma cell line. The cells were seeded in 96-
well plates (a and b) or in 60 mm diameter plates (c) and incubated overnight. Cells were further incubated in
the absence or presence of TSA for the time indicated in each panel. 1a: proliferation. Cell proliferation was
determined using the Crystal Violet colorimetric assay as described in materials and methods. Values are the
means of triplicate wells. 1b: apoptosis. The cells were analyzed by detection of histone-associated DNA
fragments in the cytoplasmic fraction of cell lysates as described in materials and methods. The values are the
means of triplicate wells. 1c: cell cycle. The cell cycle distribution was analyzed by a flow cytometer after
DNA staining with propidium iodide. Similar results were obtained from three independent experiments.

Fig. 5 shows a standard 2-D map of the Paca44 cell line, stained with colloidal Coomassie Blue.
About 700 polypeptide spots could be revealed in the pH 3-10 interval with this medium-sensitivity

stain.
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Figure 5. Master map of the pancreatic adenocarcinoma cell line Paca44. The 51 spots differently expressed
after trichostatin A treatment are marked in red.

After matching the master map of the control Paca44 cells with the master map of the TSA-treated

cells, 51 polypeptide chains, highlighted in red, were found to be differentially expressed after

treatment with the anti-tumoral drug. All these spots were eluted and treated as described in section

2.6. In Fig. 6, we have marked the 22 spots which could be identified by MS analysis, in red those

down-regulated, in blue those up-regulated.
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Figure 6. Two-dimensional master map of Paca44 cells in the pH 3-10 IPG interval. The identified spots are
numbered, in red the proteins down-regulated, in blue the proteins up-regulated. The numbered spots have
been identified by peptide fingerprinting and MS analysis (see Table 1 for protein classification).

Their identification, together with experimental and theoretically predicted pI and Mr values, are

given in Table 1.
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Table 1. Identified proteins from the Paca44 cell line 2-D gel.
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Fig. 7 gives an example of a gel area (central, low-Mr area of Fig. 6) in which some up-regulated
proteins could be found. The spot marked with a question mark in panel A represents a polypeptide
which was 10-fold up-regulated, which gave good MS values of the tryptic digest, but which could

not be identified in any of the data bases presently available.

Figure 7. Comparison of 2-D gel patterns of some proteins in Paca44 cells treated with TSA (A) and in
Paca44 control (B). The corresponding spot numbers are shown in Table 1; the spot with a question mark
corresponds to a 10 fold up-regulated protein which could not be identified in any of the databases available,
although it gave good MS spectra.

5.3.4 DISCUSSION

Differential analysis of protein expression is becoming, in the modern proteome world, a rapidly
growing field for profiling a number of pathological states, such as cancer growth. The most widely
accepted techniques, by and large, are still two-dimensional maps, with charge and mass coordinates
[55], followed by spot excision and mass spectrometry identification of tryptic digests [56]. Although
differential profiling can be today performed by a vast number of techniques (for a review, see [57]),
in conventional 2-D maps the preferred method is still statistical analysis performed on master maps
created from two independent cellular extracts (control »s. pathological or treated cells). The
available software packages, although labour-intensive, produce reliable results, widely accepted by
the scientific community.

To date only two studies have used a proteomic approach in the field of pancreatic diseases [92, 93].
The first one [92] addressed a technical issue and was devoted to preparation of pancreatic juice for
2-D map analysis, thus is not related to the present work. The second one [93] reported the effect of

the cytotoxic agent daunorubicin on protein expression of pancreatic cancer cells. In the present
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study we show that TSA is able to inhibit cell proliferation of the pancreatic adenocarcinoma cell
line Paca 44 by cell growth arrest and apoptosis. We attempted to address the molecular basis of this
effect by the study of protein expression profiles of cells before and after TSA treatment. This is the
first paper addressing the issue of gene expression variation after HDAC inhibition, which is
associated with cell cycle arrest and apoptotic cell death.

Among the 22 proteins which were identified by MS analysis, of particular interest are the two
down-regulated proteins nucleophosmin and TCTP, as well as the up-regulated proteins PDCD5
and stathmin. Their role will be briefly discussed below.

Nucleophosmin (NPM), a 3-fold down-regulated protein, appears to be particularly important in
oncogenesis. NPM is a ubiquitously expressed nuclear phosphoprotein that continuously shuttles
between the nucleus and cytoplasm. One of its suggested roles is in ribosomal protein assembly and
transport and also as a molecular chaperone that prevents proteins from aggregating. Evidence is
accumulating that the NPM gene is involved in several tumour-associated chromosome
translocations and in the oncogenic conversion of various associated proteins [58-60]. NPM appears
to be present in most human tissues, with especially robust expression in pancreas and testis and
lowest expression in lung [61]. Interestingly, a fusion protein, containing the amino-terminal 117
amino acid portion of NPM, joined to the entire cytoplasmic portion of the receptor tyrosine kinase
ALK (anaplastic lymphoma kinase) has been found to be involved in oncogenesis in the case of
non-Hodgkin’s lymphoma [62].

Translationally-controlled tumour protein (TCTP), a 3-fold down-regulated polypeptide, seems to be
involved in tumour reversion, Ze. in the process by which some cancer cells lose their malignant
phenotype. In a recent study, Tuynder ez a/. [63], have shown that TCTP is strongly down-regulated
in the reversion process of human leukemia and breast cancer cell lines. They thus hypothesized that
tumour reversion is a biological process in its own right, involving a cellular reprogramming
mechanism, overriding genetic changes in cancer, which triggers an alternative pathway leading to
suppression of tumorigenicity. TCTP was also recently found, for the first time, in rat and human
testes by Guillame ef a/. [64]. Interestingly, the mRNA of TCTP was recently reported to be over-
expressed in human colon cancer by Chung ez a/. [65].

The programmed cell death protein 5 (PDCD5, also designated as TFAR19), here found to be up-
regulated by a factor of four, is a recently discovered protein involved in the regulation of cell

apoptosis [66-68]. The level of this protein in cells undergoing apoptosis, is significantly increased
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compared with normal cells. Thus, its up-regulation in TSA-treated cell lines, as here reported, is
consistent with our finding of apoptotic cell death of Paca 44 by TSA treatment.

Stathmin (oncoprotein 18, OC18) was up-regulated by the TSA treatment by a factor of eight.
Stathmin is a p53-regulated member of a novel class of microtubule-destabilizing proteins known to
promote microtubule depolymerization during interphase and late mitosis [69]. Thus, high levels of
stathmin could induce growth arrest between the end of G2 phase and the beginning of mitosis
boundary [70, 71]. This again is highly consistent with the observation that Paca44 showed a cell
cycle arrest at the G2 phase. It is of interest to note that over-expression of stathmin, via its effect of
inhibiting polymerization of microtubules, permits increased binding to these structures of
vinblastin, a well known chemotherapeutic agent, during treatment of human breast cancer [69].
Due to its effect of inhibiting cell proliferation via a mitotic block, the up-regulation of stathmin

here reported appears to be consistent with the anti-tumoural activity of TSA [72].
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5.4 HISTONE DEACETYLATION (II): MULTIVARIATE
STATISTICAL ANALYISIS OF PROTEOMICS
PROFILING OF PANCREATIC DUCTAL CELL LINES
TREATED WITH TRICHOSTATIN-A

5.4.1 INTRODUCTION

For what concerns the comparison of 2D-PAGE maps on the basis of the spot volume, Principal
Component Analysis (PCA) has been applied since the middle eighties by Anderson ez 4/ [73] in
USA and by Tarroux et al. [74] in France. Recently, it has been applied to the study of DNA and
RNA fragments of several biological systems [75-78] and to the characterisation of proteomic
patterns of different classes of tissues [79-84]. Another recent application of PCA is for the
characterisation of the anticancer activity of bohemine, a new omoleucine-derived synthetic cycline-
dependent kinase inhibitor, by Kovarova ez a/. [85].

In the present study, PCA is applied on a dataset constituted by 18 samples, belonging to two
different pancreatic ductal cell lines (Paca44 and T3M4) before and after the treatment with
trichostatin-A.

This approach is focused on the identification of the differences that depend on the treatment and
on the different cell lines (compatison between control/treated samples and Paca44/T3M4 cell lines)
and on the validation of the results obtained by proteomics analysis of Paca44 cell lines treated with

trichostatin-A (see chapter 5.3).

5.4.2 THEORY
5.4.2.1 Principal Component Analysis

PCA is a multivariate statistical method which allows the representation of the original dataset in a
new reference system characterized by new variables called Principal Components (PCs). Each PC
has the property of explaining the maximum possible amount of residual variance contained in the
original dataset: the first PC explains the maximum amount of variance contained in the overall
dataset, while the second one explains the maximum residual variance. The PCs are then calculated
hierarchically, so that experimental noise and random variations are contained in the last PCs. The
PCs, which are expressed as linear combinations of the original variables, are orthogonal one to each

other and can be used for an effective representation of the system under investigation, with a lower
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number of variables than in the original case. The co-ordinates of the samples in the new reference
system are called scores while the coefficient of the linear combination describing each PC, Ze. the
weights of the original variables on each PC, are called /badings. The graphical representation of
scores by means of PCs allows the identification of groups of samples showing a similar behaviour
(samples close one to the other in the graph) or different characteristics (samples far from each
other). By looking at the corresponding loading plot, it is possible to identify the variables which are
responsible for the analogies or the differences detected for the samples in the score plot. From this
point of view, PCA is a very powerful visualisation tool, which allows the representation of

multivariate datasets by means of only few PCs, identified as the most relevant.

5.4.2.2 Cluster Analysis

Cluster analysis techniques allow to investigate the relationships between the objects or the variables
of a dataset, in order to recognise the existence of groups. The most used methods belong to the
class of the agglomerative hierarchical methods [86], where the objects are grouped (linked together)
on the basis of a measure of their similarity. The most similar objects or groups of objects are linked
first. The result of such analyses is a graph, called dendrogram, where the objects (X axis) are
connected at decreasing levels of similarity (Y axis). The results of hierarchical clustering methods

depend on the specific measure of similarity and on the linking method.

5.4.3 EXPERIMENTAL PROCEDURES

The dataset was constituted by 18 2D-maps, divided into four classes:

4 replicate 2D-maps of a Paca44 cell line pool;

5 replicate 2D-maps of a T3M4 cell line pool;

4 replicate 2D-maps of a Paca 44 cell pool treated for 48 hours with trichostatin-A;

5 replicate 2D-maps of a T3M4 cell pool treated for 48 hours with trichostatin-A.

Because were used pools of cell lines (grown under the same conditions) 4-5 replicates of 2D-maps
for each sample were deemed amply sufficient for reducing variability due to experimental errors.
This strategy is common practice in today's proteome analysis. Fig. 8 represents an example, for each

class, of the experimental 2D-maps obtained.
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Figure 8. 2D-PAGE maps of the real samples of pancreatic human cancer: examples of control Paca44 cells,
treated Pacad4 cells, control T3M4 cells and treated T3M4 cells.

5.4.3.1 Softwares

PCA was performed with UNSCRAMBLER (Camo Inc., ver. 7.6, Norway). Cluster Analysis was
performed with STATISTICA (Statsoft Inc., ver. 5.1, USA). Graphical representations were
performed with both UNSCRAMBLER and STATISTICA. The 2D-PAGE maps were scanned
with a GS-710 densitometer (Bio-Rad Laboratories, Hercules, CA, USA), and analyzed with the
software PDQuest Version 6.2 (Bio-Rad Laboratories, Hercules, CA, USA).
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5.4.3.2 Cell treatment with TSA

Paca44 and T3M4 cells were grown in RPMI 1640 supplemented with 20 mM glutamine and 10 %
(v/v) FBS (BioWhittaker, Italy) and were incubated at 37 °C with 5 % (v/v) CO,. Subconfluent cells
were treated with 0.2 pM TSA for 48 h.

5.4.3.3 Cell lysis

Protein extraction from cells was performed with lysis buffer (40 mM Tris, 1 % v/v NP40, 1 mM
Na;VO,, 1 mM NaF, 1 mM PMSF, protease inhibitor cocktail). Cells were left in lysis buffer for 30
min in ice. After centrifugation at 14.000 x g at 4 °C for removal of particulate material, the protein

solution was collected and stored at —80 °C until used.

5.4.3.4 Two-dimensional gel electrophoresis

Two-dimensional gel electrophoresis was performed as described in Section 5.3.2.5.

5.4.3.5 Protein identification by mass spectrometry

Protein identification by MS was performed as described in Secton 5.3.2.7.

5.4.4 RESULTS AND DISCUSSION

5.4.4.1 Protein pattern analysis with the PDQuest software
The 2-D gels of all the samples (Paca44 control and TSA-treated, T3M4 control and TSA-treated)

were scanned with a GS-710 densitometer (Bio-Rad), and analyzed with the software PDQuest. A
match-set was created from the protein patterns of the 18 replicate 2D-maps. A standard gel was
generated out of the image with the highest spot number. Spot quantities of all gels were normalized
to remove non expression-related variations in spot intensity, so the raw quantity of each spot in a
gel was divided by the total quantity of all the spots, in that gel, that have been included in the
standard. The results were evaluated in terms of spot Optical Density (OD). The analysis with the
PDQuest allowed two types of comparisons: between the two different cell lines (Paca44 vs. T3M4),
and between the control and TSA-treated cell lines (control »s. TSA-treated), in order to detected

protein variations that were at least two-fold. The Student’s T-test analysis allowed the identification

of 60 spots up-regulated (with a significance level o of 0.05) and 45 spots down-regulated (with o =
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0.05) in the T3M4 cell line with respect to PaCa44 cell line; and 11 spots up-regulated (with a
significance level o of 0.05) and 2 spots down-regulated in TSA-treated cell lines in respect to the

control samples.
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Figure 9. Results of a comparison between the two different cell lines. (a) the 45 spots with lower optical
density in T3M4 (thus more intense in Paca44 cell line) are marked in red; (b) the 60 spots with higher optical
intensity in T3M4 are marked in red; (c) the two spots down-regulated in TSA-treated cell lines are marked in
red; (d) the 11 spots up-regulated in TSA-treated cell lines are marked in red.
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Figs. 9-a and 9-b show the results of comparison between the two different cell lines (Paca44 and
T3M4). In Fig. 9-a the 45 spots with a higher optical density in Paca44 (which were thus less intense
in the T3M4 cell line) are marked in red, whereas in Fig. 9-b are marked in red the 60 spots with a
higher optical density in T3M4.

Figs. 9-c and 9-d show the results of comparison between the control and TSA-treated cell lines. In
Fig. 9-c the 2 spots down-regulated in TSA-treated cell lines (which were thus more intense in the
control) are marked in red, while in Fig. 9-d are marked in red the 11 spots up-regulated in TSA-

treated cell lines.

5.4.4.2 Principal Component Analysis

The differential analysis performed by PDQuest on the 18 2D-maps allowed the identification of
435 spots. The matching procedure produced a dataset constituted by 435 variables (the optical
density of each matched spot) and 18 objects (the 18 samples) thus giving a data matrix of
dimensions 18 x 435. All variables were autoscaled before performing PCA. The autoscaling
procedure transforms the variables so that they all have a null average value and a unit variance: this
last feature is fundamental since it allows all the variables to bring the same amount of information
to the overall dataset. In the present case, the autoscaling procedure is particularly suitable: it gives
the small spots and the large ones the same relevance, thus enhancing the detection of the
differences between the four classes of 2D-maps, which are often to be searched for among the
smallest spots (less abundant proteins) rather than among the largest ones (more abundant proteins).
Since PCA was performed on a singular matrix, having more variables than samples, a NIPALS

algorithm was used for PCs calculation. The results of PCA are given in table 2.

Explained Cumulative explained
variance (%) variance (%)
PC1 37.59 37.59
PC2 12.90 50.49
PC3 8.27 58.75
PC4 5.42 64.17
PC5 4.70 68.87
PC6 4.33 73.20
PC7 3.47 76.67

Table 2. Results of PCA performed on the overall dataset: percentage of explained variance and percentage
of cumulative explained variance.
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The first three PCs explain more than 58 % of the total variance contained in the original dataset and
were considered for the successive analysis.

Fig. 10 represents the score plots of the first three principal components.
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Figure 10. Score plots of the first three PCs. (a) PC2 versus PC1, and (b) PC3 versus PC1.

The first score plot (Fig. 10a) shows the sample co-ordinates on PC, and PC;: the four classes of
samples appear completely separated along the two PCs. In fact, at large positive values along PC,,

there are the samples belonging to the cell line Paca44, while the samples belonging to the second
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cell line, T3M4, are grouped at large negative scores on the same PC. The information about the cell
type differences is then explained by the first PC.

The information about the differences occurring between control and TSA-treated samples is instead
explained by the second PC: the TSA-treated samples of both cell lines appear in facts at large
negative scores on PC, and the control samples at large positive scores on the same PC. However,
PC, is dominated by the relative down-regulation of the spots in the Paca44 cell line, since the
samples belonging to this cell line show the largest variations of the scores on the second PC. So PC,
can be considered as describing the TSA general effect, with a larger contribution due to the Paca44
cell line. The first two PCs are thus able to account for the differences occurring between the four
classes investigated; however also PC; explains a significant amount of variance, worth of being
interpreted. The score plot of PC; versus PC, (Fig. 10-b) shows the control samples belonging to
T3M4 cell line at large positive scores on PC, together with the TSA-treated ones of the Paca44 cell
line; the other two groups of samples (TSA-treated samples of the T3M4 cells, and control samples
of Paca44 cells) being grouped at large negative scores on the same PC. However, as for PC,, the
third PC is dominated by the relative down-regulation of the spots in the T3M4 cell line, since the
samples belonging to this cell line show the largest change of the scores on PC;. The third PC mainly
describes therefore the information about the effect of TSA on T3M4 cell line, Ze. a complementary
information with respect to that accounted for by PC,.

Fig. 11 reports the cell survival of the two cell lines which present a similar sensitivity to a 48 h
treatment with 0.2 uM Trichostatin-A. With respect to this further information, the third PC mainly
accounts for the sensitivity of T3M4 cell line to the treatment with TSA.
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Figure 11. Cell survival after a 48-h treatment with 0.2 pM Trichostatin A for Paca44 and T3M4 cell lines.
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From the previous considerations, it is possible to state that the first three PCs allow a synthetic and
exhaustive representation of the investigated dataset, in facts:

- PC, explains the information related to the two cell lines;

- PC,carries the information about the TSA effect, (mainly for the Paca44 cell line);

- PC, carries the information about the sensitivity to TSA, (mainly for the T3M4 cell line).

The loadings of the three significant PCs provide information on the spots responsible for the
regulatory effect, ze. they can allow the identification of the differences occurring between the 2D-
PAGE maps of the four groups of samples.

For this purpose, the loading plots of these three components are displayed in figures 12, 13 and 14,
where the two central maps report the spots as circles centred in the x-y positions revealed by
PDQuest analysis. The red-coloured spots have a large positive loading on the correspondent PC,
while the blue ones identify the spots with large negative loadings. So the spots are represented in a
colour scale where the increasing red or blue tone is proportional to its loading. The colour of the
spots changes from those which show a small influence (small positive or negative loading, light red
or light blue coloured) towards those which show a large influence (large positive or negative
loadings, dark blue or red); the spots marked as a black circle do not have a relevant loading on the
first three PCs.

Fig. 12 shows the loadings of the spots on PC;: the red coloured circles identify those spots showing
a larger optical density in the Paca 44 cells or spots which are identified in this cell line but not in the
other one; the blue coloured circles identify the spots more intense in the T3M4 cell line or those
which are present in this line but missing in Paca 44 cells. The two examples of real samples on top
of Fig. 12 are characterised by large optical densities of the red coloured spots and small values of
the blue coloured ones (Paca 44). On the bottom of Fig. 12 there are two examples of real samples
of T3M4 cell line, characterised by large optical densities of the blue coloured spots and small values

of the red coloured ones.
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Figure 12. Loading plots of PC1 (coloured maps) with two examples of 2D-PAGE maps of real samples
(Paca44 control and TSA-treated) characterised by large values of the red-coloured spots (top) and two
examples of 2D-PAGE maps of real samples (T3M4 control and TSA-treated) characterised by large values of
the blue-coloured spots (bottom).

Fig. 13 represents the loadings plots of the PC2: the red coloured spots identify spots characterised
by a larger optical density in the diseased samples or missing in the TSA-treated ones, while the blue

coloured spots represent the spots with a larger optical density in the TSA-treated samples or
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missing in the control ones (of both cell lines). Figs. 13 (top and bottom maps) represents two
examples of control samples of the two cell lines (characterised by large values of the red coloured
spots) and two examples of TSA-treated samples of the two cell lines (characterised by large values

of the blue coloured spots).
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Figure 13. Loading plots of PC2 (coloured maps) with two examples of 2D-PAGE maps of Paca44 and
T3M4 control samples, characterised by large values of the red-coloured spots (top) and two examples of 2D-
PAGE maps of Paca44 and T3M4 TSA-treated samples, characterised by large values of the blue-coloured
spots (bottom).
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The loading plots of the PC3 are represented in Fig. 14: the red coloured circles identify those spots
showing a larger optical density in the control T3M4 cells and in the TSA-treated Paca44 cells or
spots which are absent in the other two classes of samples; the blue coloured circles show instead
spots which show a larger optical density in the control Paca44 cells and the TSA-treated T3M4 cells

or absent in the other two classes.
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Figure 14. Loading plots of PC3 (coloured maps) with two examples of 2D-PAGE maps of Paca44 treated
and T3M4 control samples, characterised by large values of the red-coloured spots (top) and two examples of
2D-PAGE maps of Paca44 control and T3M4 treated samples, characterised by large values of the blue-
coloured spots (bottom)
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The conclusions driven by means of PCA show a very good agreement with those driven by
PDQuest analysis of the 2D-PAGE maps (see chapter 5.3). The spots identified by PDQuest as the
most characterising ones were also identified by means of PCA; in this last case, however, a larger
number of spots was identified. Analysis of 2D-PAGE maps by dedicated softwares usually allows
the identification of only those spots which exhibit at least a the two-fold variations in the protein
content. PCA is a robust tool, which allows the detection of variation lower than the classical two-
fold, since the changes due to the natural variability of the experimental steps are explained by the
last PCs, which are not taken into account. The total information obtained by PCA is then larger
than that obtained by dedicated softwares; for example, in the present case, the existence of the three
patterns identified by PC,-PC; (Figs. 12, 13 and 14) could not be achieved by conventional PDQuest

analysis.

5.4.4.3 Cluster Analysis

Since the first three principal components are able to separate the four classes of samples present in
the dataset and to account for the reasons of the differences occurring between them, they are used
for performing a cluster analysis, to verify how the samples are grouped by means of the first three
PCs. The cluster analysis was performed by calculating a dendrogram with the Ward method; the

distances were computed using the Euclidean distance.
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Figure 15. Dendrogram calculated on the basis of the first three PCs (Ward method, Euclidean distances).
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Fig. 15 reports the obtained dendrogram; the ordinate label (Dleg/Dmax)*100 is a per cent
dissimilarity scale expressing the linking distance (Dleg) of the groups of objects as a fraction of the
maximum possible distance (Dmax).

The samples are separated in two main groups: the first constituted by Paca44 cells line samples and
the other given by the T3M4 cells line samples. The two groups are then separated in two sub-
groups each, at a normalised distance of more than 40%: both the cell lines considered are correctly
separated in control and TSA-treated samples. The dendrogram obtained by considering the first
three PCs is then able to correctly separate the four classes of samples thus confirming the

conclusions just driven by mean of PCA.

5.4.4.4 Mass-spectrometry

Mass-spectrometry analysis was performed only on the Paca44 cell line, due to the small size of the
samples belonging to the T3M4 cell line. Some of the differentially expressed spots between control
and TSA-treated Paca44 samples were identified by MALDI-TOF, as reported in table 3. The

identified spots are represented in Fig. 16 as black squares and the SSP is indicated near each spot.
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Figure 16. Spots identified by MS analysis: the number near each spot identifies the SSP number
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Spot 2D gel  Databank

SSp
Exp. Mr Exp. Theor. Theor. Z- MOWSE- Protein name Accession Coverage No. of Variation
(Da) pl Mr. pl Score score number (%) peptides
2211 =35,000 =4.5 24,504 4.7 2,37 8.28 E12  Tropomyosin alpha four PD7226 73.4 25 Decreased 2
chain (Tropomyosin 4)
2502 =T75000 =42 46466 43 2,38  1.81 E19 Calreticulin precursor P27797 62 25 Decreased 2
(CRP355) (Calregulin)
2213 ~35000 =49 32798 4.7 2,36 4.83 El4 Tropomyosin alpha three  P12324 65 31 Decreased 3
chamn (Tropomyosin 3)
3103 =26,000 =54 19582 49 241 1.09 E9  Translationally controlled P13693 47 14 Decreased 3
tumor protein (TCTP)
B305 =37.000 =9 37406 90 24 5.69 E10 Heterogeneous nuclear P22626 54 16 Decreased 2
and and and rnbonucleoproteins A2/Bl  and P04406 and 48 and 16
35899 8.6 I.L17TE10  and Glyceraldehyde 3-
phosphate dehydrogenase,
liver (EC 1.2.1.12)
3507 =55,000 =56 51,736 5.0 2.35 338 EI12  ATP synthase beta chain, P06576 41 16 Decreased 3
and and and mitochondrial precursor and Q15084 and 41  and 13
46,142 5.0 419EY  (EC3.6.3.14) and protein
disulfide isomerase
A6 precursor (EC 5.3.4.1)
3503 =55,000 =54 51,736 5.0 232 4.24 EIl  ATP synthase beta chain, P06576 38 15 Decreased 2
and and and mitochondrial precursor and P07437 and 42  and 14
49671 48 120 E10 (EC 3.6.3.14) and Tubulin
beta-1 chain
5104 =20,000 =62 16310 5.5 191 222 EY  ARP2/3complex 16 kDa  OI15511 86 14 Increased 8
and and and  and subunit (P16-ARC) and P16949  and 77  and 24
17,160 5.7 201 589E7  and Stathmin
(Phosphoprotein pl9)
(ppl®) (Oncoprotein 18)
4003 =18,000 =58 16,040 5.5 2.34 Deduced protein product  NCBlnr: 57 17 Increased 2
shows significant AAARR022.1
homaology to coactosin
8015 =20,000 =8 16363 &5 1.95 1.92 E9 UEV protein (ubiguitin- NCBInr: 75 13 Increased 2
conjugating E2 enzyme AAHIB6TI
variant)
7006 =~13.500 =~65 1363 64 238 1.02 E6 Hint Protein P4977 59 6 Increased 3

Table 3. Summary of the identified proteins from Paca44 cell line 2D gels. For spot numbers, refer to Fig. 9.

5.4.4.5 Biological significance of some interesting identified proteins

Among the proteins which were identified by MALDI-TOF analysis, of particular interest are the
down-regulated translationally-controlled tumour protein (TCTP) as well as the up-regulated protein
stathmin (OP18). Their role will be briefly discussed below.

Translationally-controlled tumour protein (TCTP), a 3-fold down-regulated polypeptide, seems to be
involved in tumour reversion, ze. in the process by which some cancer cells lose their malignant
phenotype. In a recent study, Tuynder e /. [87], have shown that TCTP is strongly down-regulated
in the reversion processes of human leukemia and breast cancer cell lines.

Stathmin (Oncoprotein 18, OP18) was 8-fold up-regulated by the TSA treatment. Stathmin is a p53-
regulated member of a novel class of microtubule-destabilizing proteins known to promote
microtubule depolymerization during interphase and late mitosis [88]. Thus, high levels of stathmin

could induce growth arrest at the G2 to mitotic boundary [89-90]. This suggest a cell cycle arrest at
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the G2 phase of Paca44 cell treated with TSA. Due to its effect of inhibiting cell proliferation via a
mitotic block, the up-regulation of stathmin here reported appears to be consistent with the anti-

tumoural activity of TSA.

5.4.5 CONCLUDING REMARKS

PCA is applied here to a dataset constituted by 18 samples belonging to control and TSA-treated
pancreatic ductal carcinoma cell lines (Paca44 and T3M4). PCA turned out to be a successful tool for
the identification of the classes of samples present in the dataset; moreover, the loadings analysis
allowed the identification of the regulatory spots, which characterise each group of samples. So, the
treatment of both cell lines with Trichostatin-A showed an appreciable effect on the proteomic
pattern of the control samples. The separation of the samples in four groups by mean of the first
three PCs was also confirmed by Cluster Analysis.

The conclusion driven by PCA [91] resulted in good agreement with those obtained from the
application of the differential analysis provided by PDQuest and confirmed the results shown in

chapter 5.3.
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5.5 DNA METHYLATION: PROTEOMIC PROFILING
OF PANCREATIC DUCTAL CARCINOMA CELL LINES
TREATED WITH 5-AZA-2'-DEOXYCYTIDINE

5.5.1 INTRODUCTION

Methylation of DNA occurs predominantly at the cytosine of CpG dinucleotides by DNA
methyltransferase (DNMT) activities and is generally responsible for transcriptional repression.
Recently, a link has been established between DNA methylation and histone deacetylation by studies
showing that DNMT1 and MeCPs (methyl-CpG-binding proteins) interact physically with histone
deacetylases [94-96] and that repression by methylated CpGs is partially relieved by TSA. Many
tumor suppressor genes contain abnormal methylation of CpG islands in their promoters and
appear to be silenced at the transcriptional level. To date, most of the studies investigating the
induction of gene expression by the DNMT1 inhibitor 5-aza-2’-deoxycytidine (DAC) in pancreatic
cancer have focused on the reactivation of a few genes, such as p76, DAP kinase, RARbeta [97]. The
tumor suppressor gene p76 is silenced by promoter methylation in up to 20% of both xenografted
[98, 99] and primary pancreatic cancers. However, the identification of other genes selectively
hypermethylated in this cancer may be of great importance for diagnostic purpose and for further
understanding the biology of this tumor.

In the present study, we have investigated the growth susceptibility of the human pancreatic cancer
cell line PaCa44 to DAC and determined the effect of this drug on protein expression, via proteomic

profiling, as implemented by 2-D map analysis [55].

5.5.2 EXPERIMENTAL PROCEDURES

Cell colture and cell proliferation assay were performed by Department of Neurological and V'isual Sciences staff,
Section of Biochemistry, University of 1erona.

5.5.2.1 Cells and growth conditions

PaCa44 human pancreatic adenocarcinoma cells were grown in RPMI 1640 supplemented with
20 mM glutamine and 10% fetal bovine serum (FBS; BioWhittaker, Italy) and were incubated at
37°C with 5% CO,. Cells were seeded at a density of 12 x 10°/cm’,
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5.5.2.2 Cell proliferation assay

Cells were plated in 96-well cell culture plates at subconfluency (2 x 10° cells/well).

Cells were treated with 2.5 uM DAC for 24 h and cell proliferation was evaluated from 3 to 17 days
after the beginning of the treatment. Cells were stained with Crystal Violet (Sigma), solubilized in
PBS with 1% SDS, and measured photometrically (Ass,,,) to determine cell viability. The crystal
violet staining procedure is a simple and reproducible assay of cytotoxicity based on the growth rate
reduction reflected by the colorimetric determination of the stained cells [125]. Three independent

experiments were performed.

5.5.2.3 Treatment of cells for proteomic analysis and cell lysis

Preliminary results using different concentrations of DAC showed that a 2.5 uM DAC treatment for
24 h was able to induce a 50% arrest of cell growth 3 days after beginning of the treatment, and that
maximal demethylation of DNA is obtained 6 days after treatment. Thus, we have chosen 2.5 pM
concentration and 6 days after beginning of treatment as a good compromise to obtain the best
cytotoxic effect and a reasonable amount of material for performing proteomic analysis. Protein
extraction from cells untreated and treated with 2.5 uM DAC for 24 h and harvested after 6 days
from the beginning of the treatment was performed with lysis buffer (40 mM Tris, 1% NP40, 1 mM
Na;VO,, 1 mM NaF, 1 mM PMSF, protease inhibitor cocktail). Cells were left in lysis buffer for 30
min on ice. After centrifugation at 14.000 x g at 4°C, for removal of particulate material, the protein

solution was collected and stored at — 80°C until use.

5.5.2.4 Two-dimensional gel electrophoresis

Seventeen cm long, pH 3-10 immobilized pH gradient strips (IPG; Bio-Rad Labs., Hercules, CA,
USA) were rehydrated for 8 h with 450 pL. of 2-D solubilizing solution (7 M urea, 2 M thiourea,
5mM tributylphosphine, 40 mM Ttris and 20 mM iodoacetamide) containing 2 mg/ml. of total
protein from PaCa 44 cells [100]. Isoelectric focusing (IEF) was carried out with a Protean IEF Cell
(Biorad, Hercules, CA, USA), with a low initial voltage and then by applying a voltage gradient up to
10000 V with a limiting current of 50 mA /strip. The total product time x voltage applied was 70000
Vh for each strip and the temperature was set at 20°C. For the second dimension, the IPGs strips
were equilibrated for 26 min by rocking in a solution of 6 M urea, 2% SDS, 20% glycerol, 375 mM
Tris-HCI, pH 8.8. The IPG strips were then laid on an 8-18%T gradient SDS-PAGE with 0.5%

100



Chapter 5

agarose in the cathode buffer (192 mM glycine, 0.1% SDS and Tris to pH 8.3). The anodic buffer
was a solution of 375 mM Tris HCI, pH 8.8. The electrophoretic run was performed by setting a
current of 2 mA for each gel for 2 hours, then 5 mA/gel for 1 h, 10 mA/gel for 20 h and 20 mA /gel
until the end of the run. During the whole run the temperature was set at 11°C. Gels were stained
overnight with Colloidal Coomassie blue (0.1% Coomassie Brilliant Blue G, 34% v/v methanol, 3%
v/v phosphoric acid and 17% w/v ammonium sulphate), whereas distaining was performed with a
solution of 5% acetic acid until a clear background was achieved. Five replicas for each condition

(control and DAC-treated cells) were made. In addition, the same experiments were repeated twice.

5.5.2.5 Protein pattern analysis

The 2-DE gels were scanned with a GS-710 densitometer (Bio-Rad), and analyzed with the software
PDQuest Version 7.1 (Bio-Rad, Laboratories, Hercules, CA, USA). A match set was created from
the protein patterns of the two independent cellular extracts (control cell line, DAC-treated cell line).
A standard gel was generated out of the image with the highest spot number. Spot quantities of all
gels were normalized to remove non expression-related variations in spot intensity, so the raw
quantity of each spot in a gel was divided by the total quantity of all the spots, in the same gel, that
have been included in the standard. The results were evaluated in terms of spot OD (optical
density). Statistical analysis of PDQuest allowed the study of proteins that were significantly
increased or decreased in DAC-treated cell line. Forty-eight spots were found to be differently

expressed in DAC-treated PaCa44, of which 13 spots were up-regulated (with a significance level a

of 0.05) and 35 spots down-regulated (with oo = 0.05).

5.5.2.6 Protein identification by mass spectrometry

The spots of interest were carefully excised from the gel with a razor blade and placed in Eppendorf
tubes. The gel pieces were washed twice with a solution of acetonitrile/Tris 5 mM pH 8.5 (50/50)
followed by a single wash with only Tris 5mM pH 8.5. These pieces were dehydrated in a Speedvac
device at room temperature and covered with 15 pLL of Trypsin (0.02 mg/mL) in NH,HCO, buffer
(40 mM, pH 8.5) and left at 37°C overnight. The peptides were extracted two times in 50 pL of
acetonitrile / H,0O 1% v/v formic acid (50/50). The extraction was conducted in an ultrasonic bath
for 15 min each time. The extract was brought to dryness in Speedvac and then resuspended with

10uLl of a H,O 0.1 %TFA solution. The extracted peptides were further purified by Zip-Tip
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pipetting tips (Millipore). The obtained solutions were loaded onto the MALDI target plate by
mixing 1 pL of each solution with the same volume of a matrix solution, prepared fresh every day by
dissolving 10 mg/ml. cyano-4-hydroxycinnamic acid in acetonitrile/ethanol (1:1, v:v), and allowed
to dry. Measurements were performed using a TofSpec 2E MALDI-TOF instrument (Micromass,
Manchester, UK), operated in the reflectron mode, with an accelerating voltage of 20 kV. The laser
wavelength was 337 nm and the laser repetition rate was 4 Hz. The final mass spectra were
produced by averaging 50-200 laser shots. Peptide masses were searched against SWISS-PROT,
TrEMBLE and NCBInr databases by utilizing the ProteinLynx program from Micromass, Profound

from Prowl and Mascot from Matrix Science.

5.5.3 RESULTS

The effect of the DNMT1 inhibitor DAC on the proliferation of the PaCa44 pancreatic

adenocarcinoma cell line was examined by measuring cell viability with a colorimetric assay.

Treatment with 2.5 uM DAC for 24 h inhibited cell proliferation for at least 10 days (Fig. 17).

2500 —k— Conftrol
—— DAC

cell growth (relative units)

1 3 5 7 s 11 13 15 17
time (days)

Figure 17. Effect of DAC on growth of the pancreatic cancer cell line PaCa44. Cells were seeded in 96-well
plates at a density of 2 x 103 cells/well in the absence (control) or presence of 2.5 pM DAC for 24 h. Cells
were then cultured for 17 days and the culture medium was changed three times a week. At various times, cell
viability was measured photometrically as described in the materials and methods. Values are means of
quadruplicate wells for each time point. The relative units of cell growth, in the ordinate, correspond to the
optical density at 595 nm x 1000.
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Microscopic examination of the cells at the sixth day after treatment showed important
morphological alterations such as distinctive polynucleated cells, larger dimension and
heterogeneous shape which may suggest an extensive change of the gene expression profile (Fig. 18

a, b).

Figure 18. Changes induced in cell morphology by treatment with DAC after 6 days. Photomicrographs of
unstained PaCa44 cells were performed with OLYMPUS-IX50, 10X-20X. (a) untreated cells; (b) DAC treated
cells.

A standard 2-D map of the total protein extract from PaCa44 cell line, stained with colloidal
Coomassie Blue, is shown in Fig. 19. About 700 polypeptide spots were revealed in the pH 3-10

interval with this medium-sensitivity stain.

kla

10

Figure 19. Master map of the pancreatic adenocarcinoma cell line Paca44, developed in the IPG 3-10
interval.
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After matching the master map of the control PaCa44 cells with the master map of cells at 6 days
after DAC treatment, a total of 45 polypeptide chains were found to be differentially expressed: 32
were down-regulated and 13 up-regulated.

All these spots were eluted and submitted to mass spectrometry analysis, by which thirty-six proteins

could be identified (Fig. 20).
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Figure 20. Standard two-dimensional map of Paca44 cells in the pH 3-10 IPG interval. The identified spots
are marked across the pattern, with a square the proteins down-regulated, with a circle those-upregulated.
Entry numbers refer to proteins identified by peptide fingerprinting and MS analysis (see Table 4 for their
classification).
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Of these thirty-six proteins, two were silenced, 22 were down regulated, and the remaining 12 were
up regulated.

Their identification, experimental and theoretically predicted pl, and Mr values are given in Table 4.

Spot ) SW|ss-P.rot MW pl No. peaks
D Protein Gene name| accession (exptipred) | (exptipred)
number ptip ptip

matched MASCOT Z-Score Trend in DAC- Observations and Reported Functions
score treated cell
(%coverage)

tumor-related protein, whose expression
8201 Cofilin CFL1 P23528 18710/25000 8,5/9 10 (49) 89 2,37 OFF is affected by DNA methylation; actin-
modulating protein.

actin-binding protein involved in
6118 Profilin | PFN1 P07737 14923/18000 8,7/8 8 (46) 68 2,39 OFF mantaining cell integrity, cell mobility,
and tumor cell metastasis.

human pancreatic cancer antigen; actin-

4209 | Coactosin-like protein COTL1 Q14019 15935/20000 5,54/5 7 (45) 102 2,31 | decreased 22-fold - .
binding protein.

novel human hepatocellular carcinoma
PPIA P05092 17881/22000 8,2/6,5 16 (50) 94 2,38 | decreased 16-fold| marker; overexpressed in metastatic
tumors.

Peptidyl-propy! cis-trans

6211 isomerase A

inhibitors of lysosomal cysteine
6117 Cystatin B CSTB P04080 11140/15000 7,717 7 (61) 110 2,3 | decreased 15-fold | proteinases (cathepsins); involved in
tumor cell invasion and metastasis.

6210 no data in database decreased 10-fold
8101 no data in database decreased 9-fold
inhibitor for the Ras-related Rho family
35p5 | Rho GDP-dissociation | \pyiapig|  ps2ses | 22088/50000 | 5,1/4,5 14 (61) 115 | 2,17 | decreased 9-fold | GTFases: decreased in drug-induced
inhibitor 2 apoptosis by proteolysis mediated by
caspase-3.
Peptidyl-propyl cis-trans novel human hepatocellular carcinoma
7246 | " CPH i‘s’(;;erpayse 'A' PPIA P05092 | 17881/22000 | 8,2/8,6 19 (65) 139 | 2,38 | decreased 9fold | marker; overexpressed in metastatic
tumors.

physiologic regulator of the cell cycle,
9109 | FK506- binding protein | FKBP1A P20071 11820/15000 8,5/8,9 7 (40) 77 1,7 decreased 6-fold | cell from mice knock-out manifest cell
cycle arrest in G1 phase.

. . novel human hepatocellular carcinoma
6205 Peptidyl-propy! cis-trans

B PPIA P05092 17881/22000 8,2/8,4 18 (67) 96 2,32 decreased 5-fold marker; overexpressed in metastatic
isomerase A
tumors.
inhibitor for the Ras-related Rho family
4308 | Rho GDP-dissociation | \ppapi|  psases | 22088/32000 | 5,149 | 840) 82 | 168 | decreased 5ol | GTPases: decreased in dug-induced
inhibitor 2 apoptosis by proteolysis mediated by
caspase-3.
inhibitor for the Ras-related Rho family
331g | R0 CDP-dissociation | spiapin|  psases | 2207732000 | 5146 1032) | 82 | 167 | decreased 4folq | STPases: decreased in druginduced
inhibitor 1 apoptosis by proteolysis mediated by
caspase-3.
involved in dimerization of the tubulin
4104 Tubulin-Specific TBCA 075347 | 12716116000 | 5,25/5 11 (61) 76 242 | decreased 4-fold | Subunits in degradation of defective
Chaperone A tubulin subunits and in regulating tubulin
polymerization.
. modulates the proteasome-catalyzed
Proteasome activator production of antigenic
4404 complex subunit 2. PSME2 Q9UL46 27362/37000 5.5/5,4 18 (59) 181 decreased 4-fold peptides presented to the immune

Chloride intracellular CLIC1 000299 26923/37000 5.1/5,4 9 (43)

. system on MHC class | molecules.
channel protein

chloride channel in nuclear membrane.

microtubule-destabilizing proteins
upregulated in neoplastic cells;
Stathmin (phosphoprotein| gy 4 P16949 | 17171724000 | 65,5 10 (49) 86 | 2,06 | decreased4foig |  downregulation in malignant cells
p19) Oncoprotein 18 interferes with their progression through
cell cycle and abrogates their
transformed phenotype.

5203

novel human hepatocellular carcinoma
PPIA P05092 17881/22000 8,2/8,6 18 (71) 105 2,32 decreased 4-fold marker; overexpressed in metastatic
tumors.

Peptidyl-propy! cis-trans

247 isomerase A

inwlved in Cdc2/cyclin B activation
and entry into mitosis when this process
RAN P17080 24423/32000 7,6/7,1 10 (48) 75 2,24 decreased 3-fold is coupled to the progression of S-
phase.

GTP-binding nuclear

6323 protein RAN
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Prot bunit bet subunit of proteasome involved in an
6311 © eas"Te 5“2 Untoetal oovp2 | Pag721 | 22836/30000 | 7/6,5 10 (54) 63 | 1,82 | decreased 3-old | ATP/ubiquitin-dependent nonlysosomal
ype proteolytic pathway.
participate in DNA replication in
. eukaryotic cells
7248 S'”%Li;;mf;‘:e%m‘ ssBP1 | Qo437 | 1726020000 | 98589 | 11(70) | 162 | 231 | decreased 2fold | and possibly are intracellular reguiators
9 of proliferation.
4201 60S ribosomal protein MRPL12 P52815 16394125000 | 9.3/4,8 decreased 2-fold component of th.e r!bosomallelongatlon
L12 factor binding domain.
Adenylate Kinase proapoptotic protein releases from the
7438 isoZznz me 2 AK2 P54819 26347/36000 | 8,2/8,6 17 (59) 87 2,28 | decreased 2-fold | mithochondrial intermembrane space
y into the cytoplasm during apoptosis.
calcium- and phospholipid-binding
protein upregulated in pancreatic
6505 Annexin | ANXA1 P04083 38582/40000 76,3 19 (54) 127 2,4 decreased 2-fold carcinoma cell lines, involved in cell
proliferation, mitogenic signal trasduction
and metastasis.
Prot bunit bet subunit of proteasome inwolved in an
5301 | eas"Te :‘2 unitoelal oomss | posoro | 29192732000 | 59555 | 1146 79 | 233 | decreased 24old | ATP/ubiquitin-dependent nonlysosomal
yP proteolytic pathway
Peptidyl-oropyl Gis-trans novel human hepatocellular carcinoma
6203 | PPy 2 PPIA | P0s092 | 17881/22000 | 8284 | 18(58) | 67 | 226 | decreased 2-old | marker; overexpressed in metastatic
tumors.
4403 Annexin Il ANxa3 | P12429 | 3637538000 | 5,855 | 17(52) | 132 | 236 | decreased 2-folg [2CS ke inositol 1,2-cyclic phosphate 2-
phosphohydrolase.
5720|  Stress-70 Protein | HSPA9B | P3se4s | 73681/80000 | 6,156 | 20 (28) 140 | 237 | increased 13-folq | Shaperone involved in cell proliferation,
differentiation and tumorigenisis.
tumor suppressor gene in human
6329 | Superoxide dismutase | SOD2 | Pos4179 | 2472230000 | 8676 | 9(37) 100 | 2,38 | increased 11-folg | Pancreatic cancer, owrexpression may
be effective in growth suppression of
pancreatic cancer.
tumor suppressor gene in human
i .
6321 | Superoxide dismutase | sob2 | Po4t79 | 24722130000 | 8,67 1043) | 107 | 219 | increased 6fold | PATCrEaNC cancer, overexpression may
be effective in growth suppression of
pancreatic cancer.
chaperone in the endoplasmic reticulum
5641 Protein disuifide GRPss | P3otor | seveaieoo00 | 6358 | 30(51) | 246 | 241 | increased5folg | lumen may reguiate
isomerase A3 signaling by sequestering inactive and
activated Stat3.
chaperone that accelerates the
maturation of pro-caspase-3 by
52| kDarZ‘f;LShOCK HsPD1 | P10809 | 61055065000 | 58554 | 21(37) | 151 | 238 | increased 4old | upstream activator proteases during
P apoptosis.
6105| Beta-2-microglobulin B2M Po1ss4 | 13706115000 | 6,1/65 | 10 (60) 76 | 235 | increased 4-old | Mduces caspase-dependent apoptosis
and cell cycle arrest.
. ACTB . . . . -
5511 Actine P02570 41710/52000 | 5,3/5,6 14 (41) 105 2,38 | increased 3-fold | involved in various types of cell motility.
endoplasmic reticulum-associated
agog | 190KDa oxygen-regulated| 1y | qovaiq [111336r160000| 5,215 605 | 158 | 228 | increased 3olg | PO owerexpression in pancreatic
protein beta cells is correlated with insulin
secretion.
5712|  Stress-70Protein | HsPAoB | Passas | 7aestsoooo | 6155 | 18(30) | 153 | 24 | increased 2ol | oh@Perone imvolved in cel proliferation,
differentiation and tumorigenisis.
regulate G(2)/M transition by modulating
cyclin B-CDK1 activity;
3316 SET Protein SET Q01105 32103/31000 | 4,1/4,6 9(31) 97 2,37 | increased 2-fold | interacts in vivo and in vitro with the cell
cycle inhibitor p21(Cip1).
chaperone in the endoplasmic reticulum
lumen, may regulate
Protein disulfide . signaling by sequestering inactive and
5607 ) GRP58 P30101 56782/60000 | 6,3/5,5 20 (36) 170 2,36 | increased 2-fold -
isomerase A3 activated Stat3.
5504 Actine ACTB P02570 41710/52000 | 5,3/5,5 21 (51) 176 2,31 increased 2-fold | involved in various types of cell motility.

Table 4. Identified proteins from the Paca44 cell line 2-D gel.
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The histogram in Fig. 21 displays the total changes detected of both down-regulated and up-
regulated polypeptides.

.

=

=

24 22 20 -18 -6 -14 -12 -10 -8 -6 -4 2 0 2 4 5] 8 10 12 14

decreased/increased proteins in DAC-treated PACA cell line

Figure 21. Histogram showing changes in concentration of Paca44 cell proteins after DAC treatment. The
changes ate computed as DAC-treated/control cells. A total of 45 proteins were found to change
significantly, of which 32 were down-regulated (negative values) and 13 up-regulated (positive values).

Fig. 22 gives an example of a few spots exhibiting marked changes, such as spot No. 8201 (cofilin)

that is silenced by DAC treatment.

Paca 44 Control

® <t

8201 SSP 4209 SSP 5720 SSP

Paca 44 DAC-treated

¥ ¥ ¥

OFF decreased 22-fold increased 13-fold

Figure 22. Comparison of 2-D gel patterns of some proteins in Paca44 cells treated with DAC (lower row)
and in Paca44 control (upper row). The corresponding spot numbers are reported in Table 4.
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DAC treatment caused up- or down-regulation in a number of proteins. The classification of these
proteins according to the different biological processes in which they are involved is detailed in
Table 5 and summarized in Fig. 23. It is of interest that most of the proteins which appear to be
strongly influenced by DAC treatment are mostly involved in metabolism, cell growth and cell

communication.

BIOLOGICAL PROCESS ONTOLOGY

VIRAL REPLICATION (3.57%)
SMALL MOLECULE TRANSPORT (3.57%) ONCOGENESIS (3.57%)

CELL MOTILITY (7.14%)
ACTIN CYTOSKELETON
REORGANIZATION (7.14%)
METABOLISM (42.86%)
RESPONSE TO

STRESS (14.29%)

RE L XTERNAL
S;ISI\ESII?I Sg (E? 41:;023 FRN ' CELL GROWTH
' AND/OR
MAINTENANCE
(32.14%)

CELL COMMUNICATION (25%)

Figure 23. Classification of the proteins modulated by DAC treatment according to the biological function in
which they are involved. obtained by the program FatGO (http://fatigo.bioinfo.cnio.es). Note that single
proteins may belong to more categories (see also Table 5), which explains the total sum being substantially
larger that 100%.
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- METABOLISM (42.86%): Down-regulated:
ANXAT1, FKBP1A, PPIA, | SET, HSPD1, GRP58,
RAN, SSBP1, PSMB2, SOD2.

MRPL12, PSMB4.

- CELL GROWTH AND/OR MAINTENANCE (32.14%): Down-regulated:
PEN1, CLIC1, SSBP1, SET, HSPD1, GRP58.
STMN1, RAN, TBCA.

- CELL COMMUNICATION (25%): Down-regulated:
ANXAT1, CFL1, STMNI, GRP58.
RAN, ARHGDIA,
ARHGDIB.

-RESPONSE TO EXTERNAL STIMULUS (21.43%): Down-regulated:
ANXA1, PPIA, PSME2, B2M, SOD2.
ARHGDIB.

- RESPONSE TO STRESS (14.29%): Down-regulated:
ANXA1, PPIA. HYOU1, SOD2.

-ACTIN CYTOSKELETON REORGANIZATION (7.14%): | Down-regulated:
CFL1, ARHGDIB. /

- CELL MOTILITY (7.14%): Down-regulated:
ANXAT. ACTB.

- SMALL MOLECULE TRANSPORT (3.57%): Down-regulated:
CLICI. /

- VIRAL REPLICATION (3.57%): Down-regulated:
PPIA. /

- ONCOGENESIS (3.57%): Down-regulated:
/ SET.

Table 5. Biological process ontology.

5.5.4 DISCUSSION

Differential analysis of protein expression is increasingly being used for profiling a number of
pathological states, including cancer. The most widely accepted technique is still two-dimensional
mapping, with charge and mass coordinates [55], followed by spot excision and mass spectrometry
identification of tryptic digests [101]. Although differential profiling can be performed by a vast
number of techniques (for a review, see [57]), in conventional 2-D maps the preferred method is still
statistical analysis performed on master maps created from two independent cellular extracts
(control »s. pathological or treated cells). The available software packages, although labor-intensive,
produce reliable results, widely accepted by the scientific community.

In the present study we showed that DAC inhibits cell proliferation of the pancreatic
adenocarcinoma cell line PaCa44, and attempted to address the molecular basis of this effect by the
study of protein expression profiles of cells before and after DAC treatment. The significance of

some of our findings is discussed below.
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5.5.4.1 Silenced proteins

The proteomic analysis showed that 32 proteins were down-regulated at 6 days after DAC
treatment. We speculate that at this time indirect effects, such as induction of repressors, may cause
reduction in protein expression.

Two proteins were found to be silenced upon DAC treatment: cofilin and profilin 1 (Table 4).
Cofilin is a widely distributed actin- modulating protein that has the ability to bind along the side of
F (filamentous)-actin and to depolymerize it in a pH-dependent manner. Our data appear to be in
agreement with those of Kanai e @/ [102], who have recently reported strongly reduced mRNA
expression for cofilin in DAC-treated human stomach and colorectal cancer cells. Of interest, Sinha
et al. [103] reported that cofilin was over-expressed in pancreatic adenocarcinoma cell lines, which
may suggest that suppression of cofilin might lead to cancer regression. Profilin 1 is a small actin-
binding protein that is involved in diverse functions, such as maintaining cell structure integrity, cell
motility, growth factor signal transduction and metastasis [104, 105]. The suppression of this protein

in DAC-treated PaCa44 cells is consistent with the role of this drug in inhibiting tumor cell growth.

5.5.4.2 Down-regulated proteins

This is the largest set of modulated species, since it accounts for 32 polypeptides out of a total of 45
differentially expressed. Among these, six appear to be of particular relevance: coactosin-like protein
(CLP), peptidyl-prolyl cis-trans isomerase A (PPIA), cystatin B, Rho GDP-dissociation inhibitor
(Rho GDI-2), stathmin and annexin 1.

Coactosin-like protein (CLP,-22 folds) is a human filamentous actin (F-actin) binding protein [100].
CLP binds to actin filaments with a stoichiometry of 1:2 (CLP:actin subunits). Additionally, it binds
to 5-lipoxygenase in a 1:1 molar ratio [107]. A recent report by Nakatsura ef /. [108] indicated CLP
as a tumor-associated antigen, suggesting this protein as a candidate for a vaccine for
immunotherapy of cancer patients.

Peptidyl-prolyl cis-trans isomerase A (PPIA) is thought to control mitosis by binding to cell cycle
regulatory proteins and altering their activity. It appears that the gene coding for this protein is
almost exclusively overexpressed in aggressive metastatic or chemoresistant tumours [109]. In
addition, PPIA has been recently proposed as a novel candidate marker for hepatocellular carcinoma
[110]. Interestingly, all five isoforms of the PPIA are down-regulated upon DAC treatment (-16 fold

for the main isoform, -9, -5, -4 and -2 folds for four additional, minor isoforms, see Table 4).
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Cystatin B (also called stefin B) belongs to the cystatin superfamily of cysteine protease inhibitors
and target cysteine proteases, such as cathepsin B. Cystatin B has been implicated in malignant
progression [111] and alterations in its expression, processing and localization has been observed at
various levels in malignant human tumors [112]. Progressively higher levels of cystatin B have been
associated, e.g., with short survival in patients with colorectal cancer [113]. In human squamous cell
carcinoma of the lung and in a number of other cancer types cystatin B has been found to be
significantly increased as compared to normal tissues, and proved to be a prognostic factor [114].
This latter observation together with our findings that the level of cystatin B is markedly decreased (-
15 fold) after DAC treatment suggests a role for this protein in maintaining tumor cell growth.

All of the three Rho GDP-dissociation inhibitor (Rho GDI-2) isoforms (-9 fold for the main
isoform, -5 and -4 folds for two additional isoforms) were down regulated by DAC. Rho GDI-2 is a
cytosolic protein participating in the regulation of both the GDP/GTP cycle and the membrane
association/dissociation cycle of Rho/Rac proteins. Rho GDI proteins are in general over-expressed
in breast tumors and human bladder cancer and their increased synthesis correlates with malignancy
[115, 116]. In agreement with our findings, Kovarova ez a/. [117] have reported, by 2-D map analysis,
followed by MALDI-MS, that Rho GDI proteins are significantly down-regulated in CEM T-
lymphoblastic leukemia cell lines after treatment with bohemine.

Stathmin (-4 folds) is a member of a novel class of microtubule-destabilizing proteins that regulate
the dynamics of microtubule polymerization and depolymerization. Stathmin is expressed at high
levels in a wide variety of human cancers. Inhibition of stathmin expression in malignant cells
interferes with their orderly progression through the cell cycle and abrogates their transformed
phenotype. Thus, stathmin provides an attractive molecular target for disrupting the mitotic
apparatus and arresting the growth of malignant cells [118]. The down regulation of stathmin upon
DAC treatment gives support to the findings of Mistry and Atweh [118], who suggest stathmin as a
therapeutic target in cancer therapy.

Annexin 1 is a member of a family of calcium- and phospholipids binding proteins related by amino
acid sequence homology. Annexins 1 and 2 are substrates for protein tyrosine kinases. Both these
proteins appear to be involved in mitogenic signal transduction and cell proliferation. All evidence
so far gathered suggests that over-expression of annexins occurs in a variety of malignancies and

well correlates with their progression [119-122].
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5.5.4.3 Up-regulated proteins

The most interesting among the thirteen up regulated proteins is superoxide dismutase (SOD, +11
and +6 folds for a minor isoform), which is a component of the antioxidant system located in the
mitochondrion. It has been recently shown that SOD could be a tumor suppressor in human
pancreatic cancer, and suggested that delivery of the SOD gene might be used for pancreatic cancer

gene therapy [123, 124].

5.5.5 CONCLUDING REMARKS

In conclusion, the identification in a representative pancreatic cancer cell line of proteins, whose
expression is altered by DNMT1 inhibition, may serve to understand the biology of the pancreatic
adenocarcinoma and the molecular mechanisms involved in the response to DAC treatment [125].
This information may represent a powerful tool for pancreatic cancer diagnosis and therapy with

DNA methylation inhibitors.
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