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Introduction 

•  The idea of lifting 

•  Mathematical context 

•  The filter-bank  side 

•  Polyphase representation 

•  Features 

•  Reference: “Factoring wavelet transforms into lifting steps”, I. Daubechies, W. 
Sweldens, 1996  
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The lifting scheme 

•  Different approach to biorthogonal wavelet construction 

•  Sweldens, ~95 

•  Both linear and non-linear wavelets 
–  Integer implementation enabling lossless coding 
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Biorthogonal basis: why? 

•  FIR orthonormal filters: no symmetry 
•  (except Haar filter) 

•  FIR biorthogonal filters: symmetry 
–  linear phase 
–  better boundary conditions 
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Basis oh the Hilbert space 

•  Orthonormal basis: 
–  {en}n∈N: family of the Hilbert space 
–  < en, ep>=0        ∀n≠p 
–  ∀x ∈ H,     ∃λ(n)=< x, en> 

–  |en|2=1 
–  x=∑n λ(n) en 

5 



Basis of the Hilbert space 

•  Riesz bases: 
–  {en}n∈N: linearly independent 
–  ∀y ∈ H,     ∃A>0 and B>0 :   y=∑n λ(n) en 

–                     |y|2/B ≤ ∑n |λ(n)|2 ≤ |y|2/A 
–  λ(n)=< y, e˜n> 

–  {e˜n}n∈N : dual family 
–  Biorthogonality relationship: < en, e˜p>=δ(n-p) 
–  y=∑n < y, e˜n> en 

–  A=B=1 ⇒ orthogonal basis 
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Biorthogonal filters 
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perfect reconstruction 
alias-free 

7 



Rationale 

•  Goal: Exploit the correlation structure present in most real life signals to build a 
sparse approximation 

–  The correlation structure is typically local in space (time) and frequency 

•  Basic idea 
–  Split the signal x in its polyphase components (even and odd samples) 

–  These two are highly correlated. It is thus natural to use one of them (e.g. the odds) to 
predict the other (e.g. the even) 

–  The operation of computing a prediction and recording the detail we call lifting step 
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Biorthogonal FB 

h z−1( ) h z( )+ g z−1( ) g z( ) = 2
h −z−1( ) h z( )+ g −z−1( ) g z( ) = 0

(h,g) in the analysis part (h,g) in the synthesis part 

g(z) = z−1h(−z−1)
h(z) = −z−1g(−z−1)
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ĥ* ω( ) ̂h(ω)+ ĝ* ω( ) ̂g(ω) = 2
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Lifting steps 

–  To get a good frequency splitting, the evens are also updated by replacing them with a 
smoothed version 

–  Built-in feature of lifting: no matter how P and U are chosen, the scheme is always 
invertible and thus leads to critically sampled perfect reconstruction filter banks 
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Polyphase representation 

•  Given the biorthoganl filters h and g 
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Polyphase representation 

12 



→ the other way around 

•  The problem of finding a FIR wavelet transform then amounts to finding a matrix 
P(z) with determinant =1 

•  Once the matrix is given, the filters follow 
–  One can show that this corresponds to the biorthogonality relations 

g(z) = z−1h(−z−1)
h(z) = −z−1g(−z−1)

P˜(z-1) P(z) 
HP 

LP ↓2 

↓2 

↑2 

z z-1 ↑2 
+ 

xe 

xo 

x 

Lazy wavelet 
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The lifting scheme 

•  Definition 1. A filter pair (h,g) is complementary if the corresponding polyphase 
matrix P(z) has determinant 1 

–  If (h,g) is complementary, so is 

•  Theorem 3 (Lifting). Let (h,g) be complementary. Then, any other finite filter gnew(z) 
complementary to h is of the form 

 where s(z) is a Laurent polynomial. Conversely, any filter of this form is 
complementary to h 

•  Proof 
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proof and consequences 
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“Lifted” FB 
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From Swelden’s paper 
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Analysis FB 
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Equivalent representations 

↓ 2 h

↓ 2 g

↑2 

↑ 2 

0a a0
h

g

↓2 

z ↓2 
+ 

x 
a 

d 
xo 

xe 

P z−1( )
t ↑2 

z-1 ↑2 
+ 

x 
P(z) 

xe 

xo 

19 



Equivalent representations 

↓ 2 h

↓ 2 g

↑2 

↑ 2 

0a a0
h

g

↓2 

z ↓2 
+ 

x 
a 

d 
xo 

xe 

P z−1( )
t ↑2 

z-1 ↑2 
+ 

x 
P(z) 

xe 

xo 

LP

HP

( )s z

- 

( )s z

+ 

LP

HP

( )s z

- 

( )s z

+ 

20 



Towards lossless 
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Dual lifting 

•  Teorem 4. Let (h,g) be complementary. Then any other filter hnew(z) 
complementary to g is of the form 

 where t(z) is a Laurent polynomial. Conversely, any filter of this form is 
complementary to g 

–  New polyphase matrix 

–  Dual lifting creates a new          given by 
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Dual lifting 

•  Prediction steps: the HP coefficients are shaped (lifted) by filtering the LP ones by 
the filter t(z) 

•  Update steps: the LP coefficients are shaped by filtering the HP ones by s(z) 

•  One can start from the lazy wavelet and use lifting to gradually build one’s way up 
to a multiresolution analysis with particular properties 
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lifting and dual lifting 
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The lifting concept 
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Lifted basis functions 

•  Lifting 

•  Dual lifting 
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hnew z( ) = h z( )− g z( ) s z−2( )
gnew z( ) = g z( )+ h z( ) s z2( )

does not change → lifting the wavelet through s(z) 

hnew z( ) = h z( )+ g z( )t z2( )
gnew z( ) = g z( )− h z( )t z−2( )

does not change → lifting the scaling function through t(z) 



Global Lifting 

Lifting 

Dual Lifting 

Lifting ψ 

Lifting ϕ 

( ),h g hnew ,gnew( )

( ),h g hnew , gnew( )
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Cakewalk construction 
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Lifting the Lazy wavelet 
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Lifting theorem 

•  Theorem 7. Given a complementary filter pair (h,g), then there always exist 
Laurent polynomials si(z) and ti(z) for i=1,...,m and a non-zero constant K so that 

–  The dual polyphase matrix is given by 

•  Every finite filter wavelet transform can be obtained by starting with the lazy 
wavelet followed by m lifting and dual lifting steps, followed by a scaling 

•  The prediction and update steps are found by factorization of the polyphase matrix 
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Implementation 
Analysis 
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Integer wavelet transform 
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Fully in-place implementation 

•  Odd samples are used to predict even samples and viceversa 
–  The original memory locations can be overwritten 

decomposition 
tree 

Original 
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Summary 

•  Biorthogonal (FIR) wavelets 

•  Perfect reconstruction ensured for any signal extension at borders 

•  Faster, fully in-place implementation 

•  Reduced computational complexity 

•  Non-linear lifting 

•  All operations within one lifting step can be done entirely parallel while the only 
sequential part is the order of the lifting operations 

•  Allows wavelets mapping integers to integers, important for hardware 
implementation and lossless coding 

•  Allows for adaptive wavelet transforms (i.e. wavelets on the sphere)  
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Application: Object-based coding 

Object1 Object2 Header 

Border dimension 
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Appendix 

Laurent polynomials 

[sweldens paper] 
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Filters and Laurent polynomials 
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Laurent polynomials 
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Laurent polynomials 
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