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Abstract 

Background: There is growing evidence that DNA methylation alterations contribute to carcinogenesis. While cancer 
tissue exhibits widespread DNA methylation changes, the proportion of tissue-specific versus tissue-independent 
DNA methylation alterations in cancer is unclear. In addition, it is unknown which factors determine the patterns of 
aberrant DNA methylation in cancer.

Results: Using HumanMethylation450 BeadChips (450k), we here analyze genome-wide DNA methylation patterns 
of ten types of fetal tissue, in addition to matched normal-cancer data for corresponding tissue types, encompassing 
over 3000 samples. We demonstrate that the level of aberrant cancer DNA methylation in gene promoters and gene 
bodies is highly correlated between cancer types. We estimate that up to 60 % of the DNA methylation variation in 
a cancer genome of a given tissue type is explained by the corresponding variation in a cancer genome of another 
type, implying that much of the cancer DNA methylation landscape is tissue independent. We further show that his-
tone marks in normal cells are better predictors of aberrant cancer DNA methylation than the corresponding signals 
in human embryonic stem cells. We build predictors of cancer DNA methylation patterns and show that although 
inclusion of three histone marks (H3K4me3, H3K27me3 and H3K36me3) improves model accuracy, the bivalent marks 
are the most predictive. Finally, we show that chromatin accessibility of gene promoters in normal tissue dictates the 
promoter’s propensity to acquire aberrant DNA methylation in cancer in so far as it determines its level of DNA meth-
ylation in normal tissue.

Conclusions: Our data show that a considerable fraction of the aberrant cancer DNA methylation landscape results 
from a mechanism that is largely tissue specific. Histone marks as specified in the normal cell of origin provide highly 
predictive models of aberrant cancer DNA methylation and outperform those derived from the same marks in hESCs.

Keywords: DNA methylation, Cancer, Histone, Bivalency, Chromatin

© 2016 Chen et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Aberrant DNA methylation (DNAm) is a well-established 
cancer hallmark [1–4]. Characteristic features of the 
cancer epigenome include promoter hypermethylation 
[4] and large mega-base scale blocks of hypomethyla-
tion [5–8], which often coincide with lamina-associated 
domains (LADs) [9] and domains of heterochromatin 

(H3K9me2 and H3K9me3) termed LOCKs [10]. Cancer-
associated hypermethylation of gene promoters has been 
shown to be more frequent at genes that are bivalently or 
PRC2 marked in human embryonic stem cells (hESCs) 
[11–13], and this appears to be a universal signature 
across all types of cancer. Likewise, large hypomethylated 
blocks have been shown to be a universal feature of solid 
[8] and blood cancers [7]. Interestingly, hypermethyla-
tion at bivalently or PRC2-marked gene promoters, and 
large-scale block hypomethylation are also characteristic 
features of the DNAm landscape of aged normal tissue 
[14, 15]. Given that age is a major risk factor for many 
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cancer types, it is plausible that age-associated epigenetic 
changes in normal cells contribute to a cell’s predisposi-
tion to undergo neoplastic transformation [1], with the 
transformation itself further aggravating these epigenetic 
changes [15].

Although many of the features of the cancer DNAm 
landscape appear to be universally valid across dif-
ferent cancer types, few studies have systematically 
explored the tissue specificity, or non-specificity, of 
these features at the level of individual genomic loci. 
For instance, although an interesting recent study by 
Nejman et  al. [16] has shown that each CpG island 
(CGI) has an inherent tissue-independent propensity 
to become de novo methylated in cancer, this phenom-
enon has only been demonstrated across a few tissue 
types. Likewise, the demonstration that histone marks, 
specifically H3K27me3 and H3K4me3, in normal cells 
yield improved predictors of CGI hypermethylation in 
the corresponding cancer type, compared with the cor-
responding marks in hESCs, has only been demonstrated 
for colon tissue. Other studies have explored patterns of 
cancer DNAm in relation to gene expression patterns 
in the corresponding normal tissue, but were not highly 
quantitative, did not consider histone modifications and 
only used DNAm data from the older Illumina 27k tech-
nology [17, 18]. Further, motivated by a previous study, 
which has shown that the somatic mutational landscape 
of a given cancer type can be best predicted using histone 
marks in the corresponding normal cell type [19], we 
here decided to conduct a similar analysis in the context 
of predicting the cancer DNAm landscape, using sev-
eral tissue types, as well using as the most recent histone 
modification data from the NIH Epigenomics Roadmap 
and DNAm data generated using the more comprehen-
sive Illumina 450k bead arrays.

Results
The propensity for promoter hypermethylation 
and gene‑body hypomethylation is highly correlated 
across cancer types
In order to understand the molecular rules which deter-
mine aberrant de novo DNAm in cancer, we decided to 
follow the strategy of Nejman et al. [16] and to focus on 
a background set of genomic sites which exhibit consti-
tutively normal DNAm levels in a ground state. In order 
to avoid confounding by age [15, 20, 21], we defined this 
ground state to be that of DNAm levels in fetal tissue. In 
contrast to Nejman et al., however, we used a more com-
prehensive DNAm data set profiling ten different fetal 
tissue types (stomach, heart, tongue, kidney, liver, brain, 
thymus, spleen, lung and adrenal) [22] genome-wide with 
Illumina Infinium 450k bead arrays [23], thus allowing us 
to define a more objective set of sites with constitutively 

normal DNAm levels (“Methods” section). We focused 
on three different types of genomic elements, including 
gene promoters (defined as the region 200 bp upstream 
of the transcription start site—TSS), CGIs and gene bod-
ies, resulting in 9063 constitutively unmethylated CGIs 
(cu-CGIs), 8360 constitutively unmethylated gene pro-
moters (cu-GPs) and 4059 constitutively methylated gene 
bodies (cm-GBs) across all fetal tissue types (“Methods” 
section, Additional file 1: Table S1). Confirming our defi-
nitions, we observed a strong correlation of our cu-CGIs 
with those defined by Nejman et  al. [16] using Agilent 
promoter DNAm arrays (Additional file 2: Table S2).

In order to study the DNAm patterns of these genomic 
sites in cancer, we compared their DNAm levels in ten 
different TCGA cancer types (BRCA, COAD, KIRC, 
LIHC, LUAD, GBM, LAML, STAD, UCEC and PAAD, 
“Methods” section) to their respective normal tissues. 
For instance, focusing on colorectal adenoma carcinoma 
(COAD), we ranked the top 1500 cu-GPs in order of high-
est β values in colon cancer and compared their DNAm 
levels to those in other cancer types and age-matched 
normal tissues (Fig. 1a). Extending the results of Nejman 
et al., we observed that cu-GPs exhibited similar propen-
sities to becoming methylated in other cancer types. This 
was particularly evident for colon and stomach (STAD) 
cancer, two tissue types that are developmentally similar. 
To formally quantify these correlations, we calculated R2 
values from Pearson’s correlations of the DNAm levels 
over all 8630 cu-GPs and for all pairwise combinations of 
ten tumor types (Fig. 1b). Most R2 values were relatively 
high confirming strong correlative patterns. Interestingly, 
correlations were also high between a given cancer type 
and its age-matched normal tissue (Fig. 1a). For instance, 
in the case of colon cancer, the most highly methylated 
cu-GPs were generally also the ones exhibiting most 
methylation in the age-matched normal colon (Fig. 1a). If 
this analysis was repeated using another cancer type, say 
breast cancer (BRCA), we observed a very similar pattern 
(Fig. 1a). To quantify this, we asked whether correlation 
R2 values between a given cancer and its normal tissue 
were in general higher than between cancer and normal 
comparisons from different tissue types. We were able to 
confirm this with statistical significance (Fig.  1c, Addi-
tional file 2: Fig. S1).

All of the above results were replicated had we used the 
set of cu-CGIs or cm-GBs (Additional file 2: Figs. S2, S3). 
This further supports the view that specific gene-centric 
patterns of aberrant DNAm in cancer are largely inde-
pendent of cancer type, with mean R2 values between 
cancer types of 0.57, 0.55 and 0.5 for GPs, CGIs and GBs, 
respectively. Although the R2 values were significantly 
higher for GPs compared with GBs (Additional file  2: 
Fig. S4), this could be driven by the fact that 450k probe 
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density was also highest for GPs, with average DNAm 
values in these regions being estimated over probes that 
are more highly correlated (Additional file 2: Fig. S5).

Aberrant cancer DNAm patterns are predicted best 
by bivalently marked histone signals measured in normal 
tissue
Having demonstrated that a substantial component of 
the aberrant DNAm landscape in cancer appears to be 
independent of tissue type, we next decided to explore 
the molecular determinants of tissue-specific cancer 
DNAm. Given that histone signals in normal tissue have 
recently been demonstrated to be good predictors of the 
tissue-specific somatic mutation [19, 24] and DNAm [16] 

landscape in cancer, we decided to investigate this more 
comprehensively in the context of DNAm.

We downloaded histone signal data for three major 
marks (H3K4me3, H3K27me3 and H3K36me3) in nor-
mal tissue types for which corresponding TCGA DNAm 
data were available (“Methods” section). We defined 
histone signals over gene promoters using a procedure 
which tuned the window size around the gene pro-
moter to optimize the correlation between H3K27me3/
H3K4me3 histone signals and gene expression (RNA-
Seq) for H1 hESC line (“Methods” section, Fig.  2a, b). 
We chose the H1 cell line because it exhibited a rela-
tively high similarity of histone modification pattern with 
the majority of other human embryonic stem cell lines 

Fig. 1 Tissue-independent cancer DNA methylation patterns. a Top heatmap depicts the DNA methylation values of 1500 top-ranked cu-GPs, 
ranked by level of hypermethylation in colon cancer (COAD), across all fetal tissue types, adult normal tissue and age-matched cancer types from 
the TCGA. Lower heatmap is the analog for top 1500 cu-GPs, ranked according to hypermethylation in breast cancer (BRCA). In every case, we show 
the average DNAm values in each phenotype. b Upper diagonal Scatterplots of average DNAm levels of the 8360 cu-GPs between each cancer type. 
Lower diagonal corresponding R2 (Pearson) correlation values. c Heatmap of correlation R2 values of the average DNAm levels of the 8360 cu-GPs in 
a given cancer type against the corresponding DNAm levels in normal tissue
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(“Methods” section, Additional file 2: Fig. S6). This pro-
cedure resulted in ±300 bp around the TSS as an optimal 
(or near optimal) window size for histone signals defined 
over gene promoters (Fig. 2b, Additional file 2: Fig. S7). 
We then used this window size to define corresponding 
histone signals in normal cell types. Specifically, focusing 
on the cu-GPs, we computed for each of the two histone 
marks H3K4me3 and H3K27me3 in the corresponding 
normal tissue, an AUC, assessing its ability to predict 
DNA hypermethylation at the same cu-GPs in the corre-
sponding cancer (“Methods” section). In order to bench-
mark performance, we compared the AUCs to those 

obtained using the same histone marks in hESCs. We 
observed that H3K4me3 and H3K27me3 signals derived 
in the normal tissue of the same cell type were better pre-
dictors of cancer hypermethylation at cu-GPs than the 
corresponding signals as estimated in hESCs (paired Wil-
coxon’s test one-tailed P value =  0.0007, Fig.  2c, Addi-
tional file 2: Fig. S8). Interestingly, we observed that this 
improvement in prediction was much more marked for 
the H3K4me3 signal. In fact, while the hESCs H3K27me3 
signal already yielded a relatively high prediction accu-
racy with only a marginal improvement seen for the nor-
mal-tissue H3K27me3 signal, the corresponding hESCs 
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signal for H3K4me3 was generally not predictive, or only 
marginally so (Fig.  2c). In general, the H3K27me3 and 
H3K4me3 signals performed similarly in normal adult 
tissue (Fig. 2c). Thus, these results generalize the obser-
vations made previously in the case of colon tissue [16] to 
several other normal tissue types.

H3K36me3 histone signal measured in normal tissue type 
outperforms the corresponding hESC signal as predictor 
of gene promoter hypermethylation and gene‑body 
hypomethylation in cancer
Next, we decided to extend the analysis described 
above to include other histone marks. We considered 
H3K36me3 for various reasons. First, this mark fea-
tured prominently as a predictor of somatic mutation 
frequency in cancer [19]. Second, we previously found a 
reader (WHSC1) and an editor (CBX7) of this mark to 
be among candidate key master regulators of the cancer 
DNA methylome [25]. Thus, we posited that this mark in 
normal cells may carry important predictive information 
of which genes are aberrantly methylated in cancer. In 
contrast to the bivalent marks, the H3K36me3 signal was 
estimated over the gene body, due to its role in transcrip-
tion elongation (“Methods” section). We observed that 
the signal derived in normal tissues was more predictive 
of promoter hypermethylation in cancer than the corre-
sponding signal in hESCs (one-tailed paired Wilcoxon’s 
test P = 0.047, Fig. 3a). Although overall accuracies were 
high, comparison of H3K36me3 to the bivalent marks 
revealed marginally worse performance (Additional file 2: 
Fig. S9).

Since H3K36me3 is mainly distributed over the gene 
body, we also investigated whether the mark would better 

predict gene-body hypomethylation in cancer. For this 
analysis, we focused on the cm-GBs and asked how well 
the marks in normal cells would predict cancer-associ-
ated hypomethylation. We found that the H3K36me3 
signal could better predict tumor-associated gene-body 
hypomethylation than the corresponding signal meas-
ured in hESCs for half of the six tissue types (Fig.  3b). 
Although there was no statistical significance, for those 
tissues exhibiting a larger difference in AUC, the AUC 
was always higher for the H3K36me3 mark in normal 
tissue (Fig.  3b). Interestingly, predicting cancer-associ-
ated gene-body hypomethylation with H3K4me3 and 
H3K27me3 promoter signals in normal tissues was also 
possible, although, overall, H3K36me3 performed mar-
ginally better than the bivalent marks (Additional file 2: 
Fig. S10).

Multivariate histone signal models allow highly accurate 
prediction of cancer‑associated hypermethylation
To more formally compare the three histone signals to 
each other and to more objectively assess prediction per-
formance, we used a 70 % training 30 % test set strategy 
whereby differentially hypermethylated and non-hyper-
methylated genes were assigned in equal proportions to 
each set (“Methods” section). We first used a forward 
selection strategy to train a total of seven nested models 
with all potential combinations of histone marks as pre-
dictors within a logistic regression model framework. 
We used an internal validation set to select a best pre-
dictive model from the training set for each tissue type, 
which was then finally evaluated in the blind test set 
(“Methods” section). In addition, all seven models were 
compared using the Akaike information criterion (AIC). 
Overall, across the six tissue types, both model selection 
procedures (forward selection and AIC) revealed that a 
three-predictor (histone) model performed best, typically 
achieving AUC values of over 0.8 (Fig. 4a). Importantly, 
performance in the training and test sets was similar, 
although marked variation across tissue types was evi-
dent (Fig. 4b). Of note, the three-predictor model yielded 
highly consistent predictive patterns across the six tissue 
types, with H3K27me3 emerging overall as the top pre-
dictor, correlating positively with promoter cancer hyper-
methylation, whereas H3K4me3 and H3K36me3 signals 
correlated negatively (Fig. 4c). This indicates that higher 
levels of promoter H3K4me3 or gene-body H3K36me3 in 
normal tissue is protective of cancer-associated promoter 
hypermethylation.

Patterns of cancer DNA methylation across DNase 
hypersensitive sites
Finally, we decided to investigate how the patterns 
of aberrant cancer methylation may depend on the 
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Fig. 3 Prediction accuracy of tissue-specific cancer DNAm patterns 
from the H3K36me3 signal. a Scatter plot shows the area under the 
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ylation in cancer from the H3K36me3 signal in the corresponding 
normal tissue or hESC, as indicated. Normal/cancer tissues consid-
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pancreas (PAAD) and breast (BRCA). P value is from a paired Wilcoxon 
rank sum test. b As a, but now predicting gene-body hypomethyla-
tion in cancer
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accessibility of chromatin in normal tissue. To this end, 
we obtained DNase hypersensitive sites (DHSs), as deter-
mined by the NIH Epigenomics Roadmap [26, 27] for 
a number of primary (adult) and fetal cell types, which 
included lung, kidney and pancreas (“Methods” section). 
First, we considered all gene promoters, regardless of 
their DNAm levels in normal tissue, and asked whether 
promoters in DHSs are more likely to undergo can-
cer hypermethylation than promoters located in closed 
chromatin regions. Across the three tissue types (lung, 
kidney, pancreas) and considering in total five cancer 
types (LUAD, LUSC, KIRC, KIRP and PAAD), in every 
single case we observed a stronger differential methyla-
tion pattern for promoters in DHSs, possibly owing to 
their lower level of DNAm in normal tissue (Fig. 5a). GPs 
outside DHSs were generally highly methylated in nor-
mal tissue and did not exhibit a clear trend toward either 
hyper- or hypomethylation in cancer (Fig. 5a). Next, we 
repeated the same analysis but now restricting to tissue-
specific bivalent GPs. The bivalent GPs located outside 
DHSs exhibited significantly lower levels of DNAm in 
normal tissue compared with non-bivalent GPs, resulting 
in a significant trend toward hypermethylation in cancer, 
although not as significant as for bivalent GPs located in 

DHSs (Fig. 5b). A similar finding was evident by restrict-
ing to the class of cu-GPs identified earlier (Additional 
file 2: Fig. S11). Together these data suggest that chroma-
tin accessibility of GPs in normal tissue only determines 
the propensity of cancer hypermethylation in so far as it 
determines the level of DNAm in the normal tissue.

Discussion
The results presented here confirm those of Nejman et al. 
[16] and Sproul et al. [17], while also extending their key 
findings to several other tissue types and gene regions. 
Specifically, we have here shown that the aberrant DNAm 
landscape of any given cancer type is highly correlated 
(R2 values >0.5) across cancer types, a result which was 
valid not only for CGIs but also for gene promoters and 
gene bodies. As proposed by Nejman et al. for the case of 
CGIs, this suggests that each gene-associated region, be 
it a promoter or gene body, has an intrinsic propensity to 
acquire aberrant DNAm in cancer.

Our second main contribution is the demonstration 
that bivalent histone marks at gene promoters, as defined 
in normal cells, are a better predictor of promoter hyper-
methylation in cancer compared with the corresponding 
marks in hESCs. This result was demonstrated across 
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six different tissue types, while Nejman et  al. only con-
sidered colon tissue. In addition, we also considered the 
H3K36me3 mark in normal cell types, which in general 
also resulted in better predictions of aberrant cancer 
DNAm compared with the signal as defined in hESCs. 
Thus, we built prediction models using all three histone 
marks (H3K27me3, H3K4me3 and H3K26me3), which 
demonstrated that each one of these marks adds predic-
tive value, although the bivalent marks were generally the 
most predictive of promoter hypermethylation in cancer. 
Indeed, our data further support the view that H3K27me3 
in normal cells is the most predictive mark of promoter 

cancer hypermethylation, followed closely by H3K4me3, 
which acts to protect the promoters from cancer hyper-
methylation, consistent with the findings of Sproul et al. 
[17] who only considered gene expression levels. This 
indicates that promoters marked only by H3K27me3 in 
normal cells are the most likely to undergo hypermethyl-
ation in cancer, with bivalently marked promoters show-
ing marginally less propensity to do so. Interestingly, our 
data further point to the H3K4me3 promoter mark in 
normal tissue as being particularly informative of which 
promoters do not undergo hypermethylation in cancer, 
with the corresponding mark in hESCs not being predic-
tive. It will be interesting to explore these results further 
in the context of a recent study showing that promoters 
characterized by broad H3K4me3 peaks in normal cells 
may mark candidate tumor suppressor genes [26].

Finally, we have also explored the cancer DNAm land-
scape in relation to open/closed chromatin states in the 
corresponding normal cell types. Not unexpectedly, we 
observed a very strong inverse correlation between pro-
moter DNAm levels and chromatin accessibility, both 
defined in the same normal tissue. As a result of this, 
promoters in closed chromatin regions, which are gen-
erally methylated, did not exhibit a consistent and sig-
nificant trend toward aberrant DNAm in cancer. In 
contrast, promoters in open chromatin regions were 
invariably unmethylated in normal tissue and gener-
ally exhibited hypermethylation in cancer. Interestingly, 
however, this pattern changed slightly when we focused 
on bivalent promoters or promoters which are unmethyl-
ated in a normal tissue type, since these promoters, even 
those outside of DHSs, generally exhibited significant 
hypermethylation in cancer. Thus, irrespective of chro-
matin accessibility, the propensity of a promoter region 
to undergo DNAm changes in a specific cancer type is 
mainly determined by its level of DNAm in the corre-
sponding normal tissue.

Conclusions
In summary, this work shows that much of the cancer 
DNAm landscape is determined by a mechanism which 
is largely independent of the original tissue type. Never-
theless, bivalent histone marks in normal cells are better 
predictors of aberrant cancer DNAm patterns than the 
corresponding marks defined in hESCs.

Methods
Data collection
DNAm data of 37 fetal samples were downloaded from 
the Stem Cell Matrix Compendium version 2 (SCM2) 
[22]. There were ten types of fetal tissues in total, includ-
ing stomach, heart, tongue, kidney, liver, brain, thy-
mus, spleen, lung and adrenal gland. DNAm data of 

Fig. 5 Patterns of promoter DNAm change in cancer depending 
on open/closed chromatin. a Boxplots of DNAm β values of gene 
promoters, stratified according to normal/cancer tissue and whether 
in or outside of a DHS region, where DHS status is determined in the 
corresponding normal cell type. DHS data were available for three 
normal tissues (lung, kidney and pancreas), and hence, there were a 
total of five cancer types (KIRC, KIRP, LUAD, LUSC and PAAD). Above 
boxplots, we give the t statistics between normal (N) and cancer (C). 
Red labels the t statistics when restricted to DHS regions, and blue 
labels t statistics when restricted to non-DHS regions. Above the 
plot we give the corresponding t test P values. b As a, but now for 
bivalently marked gene promoters, with bivalency as determined in 
the normal cell type



Page 8 of 11Chen et al. Epigenetics & Chromatin  (2016) 9:10 

normal/cancer tissues were downloaded from The Can-
cer Genome Atlas (TCGA) Data Portal and included 
colon, kidney, liver, lung, pancreas, stomach, skin, brain, 
endometrium and breast tissue.

All DNAm data were generated on the Illumina Infin-
ium HumanMethylation450 BeadChip, which provides 
genome-wide coverage of 99  % RefSeq genes and 96  % 
CGIs. Probes on this bead array are distributed across all 
gene regions (promoter region, 5′ UTR, 1st exon, gene 
body and 3′ UTR), and all CGI regions, including shores 
and shelves. Such a broad coverage of genes and CGIs 
make it possible for us to calculate β values for specific 
gene regions and CGIs.

ChIP-Seq data for H3K4me3, H3K27me3 marks meas-
ured in normal colon mucosa, normal liver, normal 
lung, normal pancreas and normal breast, as well as all 
H3K36me3 marks were downloaded from the NIH Road-
map Epigenomics Mapping Consortium Web site (http://
www.roadmapepigenomics.org/). The H3K4me3 and 
H3K27me3 signal data for kidney were downloaded from 
the International Human Epigenome Consortium (IHEC) 
Web site (http://ihec-epigenomes.org/).

Gene expression data (RNA-Seq) for the human 
embryonic stem cell line H1 were downloaded from the 
NIH Roadmap Epigenomics Mapping Consortium Web 
site.

Processing of TCGA DNA methylation data
Level-3 TCGA data were further processed as follows: 
Probes with a coverage of <70  % were removed. Miss-
ing values of remaining probes were estimated using the 
impute.knn function from the impute package (k  =  5) 
[28]. BMIQ was then applied to adjust for the type II 
probe bias [29]. To assess potential confounding by tech-
nical sources of inter-sample variation or unknown batch 
effects, we applied singular value decomposition (SVD) 
to each TCGA data set to check that the top compo-
nent of variation of the data is associated with normal/
cancer status, an approach we have validated previously 
[30]. After that, β values of probes located within 200 
base pairs upstream of the TSS of a gene or, alternatively, 
located within a gene body (excluding the 1st exon) were 
averaged for each gene, yielding separate promoter and 
gene-body DNAm values for each gene. We also calcu-
lated an averaged β value for each promoter CGI.

Definition of constitutively unmethylated gene promoters, 
CGIs and constitutively methylated gene bodies
We defined sets of constitutively unmethylated (cu) gene 
promoters and CGIs across all ten types of fetal tissue. 
To declare a methylation value as being unmethylated 
in a given sample, we inferred sample-specific thresh-
olds from the application of BMIQ, which assigns all 

methylation values to three states (unmethylated, half-
methylated, fully methylated) according to a three-state 
beta-mixture model [29]. Specifically, if the gene pro-
moter or CGI methylation value was less than the lower 
threshold inferred using BMIQ for that particular sam-
ple, that value was declared unmethylated. In the case 
of gene bodies, we used the upper threshold of BMIQ to 
determine whether the average gene-body methylation 
was “methylated.” Specifically, we declared values larger 
than the upper threshold as methylated.

Processing of ChIP‑Seq data
All ChIP-Seq data were downloaded in bigWig format 
from the Web sites mentioned earlier. First, we con-
verted bigWig formatted data to bedGraph format using 
the function bigWigToBedGraph provided by the UCSC 
Genome Bioinformatics Web site. The bedGraph for-
matted data could be directly read into R. Each row of 
a bedGraph file gives the start and end position of each 
tag and an associated minus log10 p value, S = −log10[P] 
for this region. All of these data were of the hg19 genome 
assembly, so we used the gene annotation file of the same 
assembly to map tags in bedGraph files to gene promoter 
or gene-body regions (gene body defined here from the 
1st exon to the last one, including introns). An averaged 
〈S〉 signal value was assigned to each gene by averaging S 
values from the matched tags.

In the case of gene promoters, the window size for 
promoter H3K4me3 and H3K27me3 signals needs to be 
carefully chosen. To tune this parameter, we first calcu-
lated average H3K4me3 and H3K27me3 signal values for 
each gene promoter using different window sizes (±200, 
300, 500, 700, 900, 1100, 1300 and 1500 bp from the gene 
TSS). Then, we assessed the correlation (Pearson’s corre-
lation coefficients) of the resulting histone signals (calcu-
lated for different window sizes) with gene expression, all 
measured in H1 hESC cell line.

The H1 cell line was selected from a total of eight dif-
ferent human embryonic stem cell lines (WA7, I3, H1, 
H9, UCSF4, HUES6, HUES48 and HUES64). The selec-
tion was done by comparing the similarity between gene 
promoter (TSS300) H3K4me3/H3K27me3 and gene body 
(from the end of the 1st exon to the last one, excluded 
introns) H3K36me3 modifications. We used pairwise 
Pearson’s correlation coefficients between the eight hESC 
lines as a measure of similarity. The H1 cell line exhibited 
the hightest similarity to most other hESC lines.

Processing of H1 mRNA expression data
We downloaded the RNA-Seq gene expression data 
(quantified as RPKM) of the H1 human embryonic stem 
cell line from NIH Roadmap Epigenomics Mapping Con-
sortium Web site. We substituted zero values with the 

http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
http://ihec-epigenomes.org/
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smallest positive value. As a threshold for calling expressed 
and non-expressed genes, we used ten reads. Since the 
total number of reads used in the generation of the data 
is around 39 million [26] and since the average length 
of genes in the whole genome is about 1  kb, we used a 
rounded value of −2 

(

log2

(

10
39×1

)

∼ −1.96
)

 as a thresh-

old for calling a gene expressed or not. In other words, if a 
gene has <10 matched reads (log2[RPKM] < −2), we assign 
a log2[RPKM] value of −2 to it.

Differential DNA methylation analysis
Two tailed t-tests were performed for each gene sepa-
rately to detect differential promoter, or gene-body, 
DNAm in tumors compared with normal samples. We 
ranked genes by t statistic, with the resulting top N genes 
declared to be differentially methylated, while the bot-
tom N genes were defined as not differentially methyl-
ated. N is a varying number used to assess the stability 
of our method. Because gene promoter and CGI levels 
are usually unmethylated in normal tissue, in these cases 
we ranked genes by the level of hypermethylation (i.e., 
by positive t statistics) in cancer compared with normal. 
Correspondingly, for gene-body DNAm, we ranked genes 
according to the negative t statistic, ranking at the top 
those genes exhibiting the largest decreases in gene-body 
methylation in cancer.

Histone mark prediction of cancer DNA methylation 
patterns
We used a varying threshold to define the histone mark 
occupancy (signal value) as a binary state at individual 
genes. Since each gene is also defined as differentially 
methylated in cancer or not (depending also on the 
parameter N of top-ranked genes), a two-by-two con-
tingency table for each histone modification threshold 
was generated, and a ROC curve was plotted out with 
the sensitivity and one-specificity calculated from the 
table. From this, we then estimated the area under the 
curve (AUC), indicating the prediction accuracy of each 
histone mark. A value of AUC was obtained for differ-
ent choices of N. For all three histone marks (H3K4me3, 
H3K27me3 and H3K36me3), we chose N of 300 as this 
threshold gave us a consistent and robust result. For a 
given same value of N, we compared the prediction accu-
racy for each histone mark measured in normal tissue 
to the prediction accuracy of the corresponding marks 
measured in hESCs. Paired Wilcoxon’s tests across all 
normal tissue types were performed to assess whether 
the difference between the AUCs derived from normal 
tissue and hESCs was statistically significant. Robustness 
of results to variations in N was assessed by comparing 
AUC values for different values of N.

Prediction of promoter DNA hypermethylation in cancer 
using multivariate histone signal models
In order to assess the interplay between histone signals 
in predicting promoter DNA hypermethylation in can-
cer, we considered multivariate logistic regression mod-
els. Differentially hypermethylated and not differentially 
hypermethylated gene promoters in each cancer type 
were defined as the top 1000 and bottom 1000 genes 
(totally 2000), ranked by their t statistic. We then used a 
number of different model selection strategies to identify 
the best predictive logistic regression model among all 
models representing different possible combinations of 
one, two or three histone marks (seven models in total: 
1 × 3, 3 × 2, 3 × 1). In one approach, we compared the 
seven models using the estimated AIC values (smaller 
AIC values indicate better models). In an alternative 
approach, we split the 2000 genes into a 50  % training 
set, a 20 % internal validation set (used for model selec-
tion) and a 30 % true blind test set, in equal proportions. 
The strategy here was to use the training set to learn the 
seven different logistic regression models and to then use 
an internal cross-validation (or model selection) step to 
evaluate each of the learned models in the blinded 20 % 
internal validation set, allowing us to assess which of 
the trained predictive models generalized best in a blind 
validation set. Finally, in order to check that our model 
selection has not introduced overfitting, the selected 
best model was tested using the true blind test set (30 %). 
Performance evaluation of all models in all three sets 
(training, internal test and true blinded) was assessed by 
computing the AUC.

Correlation analysis of DNAm patterns
For each background set of cu-GPs, cu-CGIs or cm-GBs, 
we calculated the Pearson correlation coefficients of their 
average DNAm values in each cancer type with the corre-
sponding values in their respective normal tissue. R2 values 
between cancer and normal tissue of the same type were 
compared (using a t test) to those of cancer-normal com-
parisons of different tissue types. We also used Pearson’s 
correlations to calculate the correlation of DNAm patterns 
at cu-GPs, cu-CGIs and cm-GBs, between cancer types.

450k probe density for each genomic region
Probe density was calculated by dividing the number of 
450k probes in a given genomic region by the length of 
the region. After having mapped the Illumina 450k probes 
annotated as “TSS200” or “Body” to all genes in the 
genome, we divided the number of probes mapped to the 
same gene by the distance between two matched probes 
which are farthest from each other. The density of probes 
over CGIs was calculated in a similar way. After mapping, 
for each CGI we counted the number of matched probes 
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and the length of the CGI (the end site −  the start site). 
Then, we did pairwise comparison of difference in probe 
density over the three genomic types of region by t test.
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