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Abstract

EF-Tu has been shown to interact with actin-like protein MreB and to affectits localization in Escherichia coliand in
Bacillus subtilis cells. We have purified YFP-MreB in an active form, which forms filaments on glass slides in vitro
and was active in dynamic light-scattering assays, polymerizing in milliseconds after addition of magnesium.
Purified EF-Tu enhanced the amount of MreB filaments, as seen by sedimentation assays, the speed of filament
formation and the length of MreB filaments in vitro. EF-Tu had the strongestimpact on MreB filaments in a 1:1 ratio,
and EF-Tu co-sedimented with MreB filaments, revealing a stoichiometric interaction between both proteins. This
was supported by cross-linking assays where 1:1 species were well detectable. When expressed in E. coli cells,
B. subtilis MreB formed filaments and induced the formation of co-localizing B. subtilis EF-Tu structures, indicating
that MreB can direct the positioning of EF-Tu structures in a heterologous cell system. Fluorescence recovery
after photobleaching analysis showed that MreB filaments have a higher turnover in B. subtilis cells than in E. coli
cells, indicating different filament kinetics in homologous or heterologous cell systems. The data show that MreB
can direct the localization of EF-Tu in vivo, which in turn positively affects the formation and dynamics of MreB
filaments. Thus, EF-Tu is a modulator of the activity of a bacterial actin-like protein.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The shape of the cell usually plays a key role in its
physiology and survival. For example, directed motility
is mostly described for a rod-shaped or spiral-shaped
cell, but not for round bacteria (cocci), except for some
round Cyanobacteria [1,2]. Even more importantly, the
maintenance of rod-shaped morphology is apparently
essential for all bacterial cells analyzed so far because
loss-of-function mutations in genes that are involved in
cell shape maintenance are lethal or leave the cells
barely viable [3,4]. Besides several membrane proteins
that are (or are thought to be) involved in the synthesis
of the shape-determining cell wall, a central player in
the generation of rod or complex cell shape is MreB, the
bacterial ortholog of actin. As seen from their structure
and the way they form double-filament structures,

MreB and actin clearly share the same ancestor [5]. In
addition to ATP, MreB can also employ GTP for the
formation of filaments [6], but it forms straight or
double-helical filaments, dependent on purification
conditions [5,7], rather than just purely helical fila-
ments such as actin [8]. The depletion of MreB in
model bacteria such as Escherichia coli, Caulobacter
crescentus or Bacillus subtilis results in the generation
of round cells, while the cell cycle continues, until cells
eventually lyse [9—11]. In contrast, Helicobacter pylori
cells keep their helical shape but grow very slowly
[12]. In all bacteria investigated so far, MreB forms
filamentous structures underneath the cell membrane
[9,10,11], which interact with membrane proteins
MreC and MreD [13—15] and with cell-wall-synthesizing
enzymes (e.g., Pbp1) [16], whose loss also affects
cell morphology. Interestingly, it has recently been
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shown that MreB has an inherent affinity to the
cell membrane [17,18] and thus does not need a
membrane anchor for proper localization. It has
been postulated that the localization of MreB affects
the localization of MreC (which also interacts
with several Pbps [19]), MreD and of Pbp1, thereby
directing the organization of cell wall synthesis,
which also occurs in a helical pattern [20]. However,
this model has not been stringently proven. Itis also
still unclear how MreB obtains its localization pattern
underneath the cell membrane and what determines
the turnover of MreB filaments, which is high in
B. subtilis and C. crescentus cells [21,22] but is
apparently low in E. coli cells.

We have shown that translation elongation factor
EF-Tu forms a structure underneath the cell mem-
brane in B. subtilis cells and co-localizes and interacts
with MreB [23]. Depletion of EF-Tu affects the
localization and dynamics of MreB filaments, which
become disorganized and lose their fast remodeling
kinetics. Conversely, in mreB mutant cells (which can
be generated in a special medium), EF-Tu no longer
localizes to the helical structures, suggesting that both
proteins affect each other's localization. Recently, it
has been shown that EF-Tu also interacts with MreB in
E. coli. With the use of super-resolution microscopy, it
was shown that only a subset of EF-Tu and MreB
molecules interact, mostly at places close to the cell
membrane [24]. EF-Tu has long been proposed to
serve an additional role as a cytoskeletal element in
many bacteria [25] and, apparently, an interaction with
MreB proteins conserved in several bacteria.

We wished to gain further insight into the interplay of
EF-Tu and MreB. However, EF-Tu is essential for
translation; thus, it is difficult to analyze its direct effect
on MreB in B. subtilis cells. Therefore, we turned to a

heterologous cell system, expressing B. subtilis MreB
and EF-Tuin E. colicells, as well as in vitro experiments
using purified proteins. Our experiments show that
EF-Tu stimulates and stabilizes the formation of
MreB filaments in vitro, and therefore, it is a potential
modulator of MreB activity in bacteria.

Results

MreB and EF-Tu can be efficiently cross-linked
in vitro

We used a cross-linking assay to further confirm
the physical interaction between MreB and EF-Tu
in vitro. When expressed, together in E. coli cells,
Strep-MreB and EF-Tu-His co-purified from the
Streptavidin column in an approximately 1:1 ratio,
confirming their interaction in vitro. The additional
band at 70 kDa was determined to be DnaK, the
bacterial Hsp70 molecular chaperone, via mass
spectrometry (Fig. 1a, lane 1). DnaK is a frequent
contamination during heterologous protein expres-
sion in E. coli [26]. The treatment of the co-purified
proteins with the bifunctional cross-linking agent
glutaraldehyde resulted in the appearance of new
bands on the SDS-PAGE gel. Varying the reaction
incubation time over a 15-min period at room
temperature did not show any significant difference
in banding patterns or intensities (Fig. 1a, lanes 3-5).
The bands were gel-excised and their protein
constituents were identified by mass spectrometry.
Additionally, the bands were blotted onto nitrocellu-
lose membrane and probed with antibodies specific
for MreB. The glutaraldehyde cross-linking reaction
yielded four additional distinct bands visible on
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Fig. 1. Chemical cross-linking analysis of Strep-MreB and EF-Tu-His by glutaraldehyde. (a) The different cross-linked
species were resolved by 8% SDS-PAGE. The constituents of the analyzed bands are indicated. Note that EF-Tu-His ran
higher than its expected size of 43.5 kDa. (b) The bands from a gel duplicate in (a) were transferred to nitrocellulose and
subjected to Western blotting with anti-MreB antibodies revealing MreB-containing bands. The incubation time of the

cross-linking reaction is indicated on each lane.
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Table 1. Protein components of the analyzed bands as
deduced from mass spectrometry data

Band 1 Band 2 Band 3
Molecular mass 125 85 72
(kDa)
Corresponding  1x MreB + 2x 1x MreB + 1x 2x
components EF-Tu EF-Tu MreB

The sizes of the bands were calculated according to the molecular
mass of 35.78 kDa and 43.43 kDa for MreB and EF-Tu,
respectively.

silver-stained SDS-PAGE gel (Fig. 1a, lanes 3-5).
Three of the four bands were identified as follows:
band 1, EF-Tu (corresponding to a size of 2 molecules
of EF-Tu and 1 molecule of MreB); band 2, MreB
and EF-Tu (corresponding to a size of 1 molecule of
MreB and 1 molecule of EF-Tu); and band 3, MreB
(corresponding to a size of 2 molecules) (Table 1).
Western blot analysis corroborated with the mass
spectrometry data. In the absence of glutaraldehyde,
anti-MreB recognized a single band of the size of
MreB but also stained all MreB-containing bands in
the cross-linked samples (Fig. 1b). Importantly, mass
spectrometry analysis revealed the same amount of
peptides from MreB and EF-Tu in band 2, suggesting
1:1 interaction between the proteins. We also used a
second cross-linking reagent, BS3 [bis(sulfosuccini-
midyl)suberate], that reacts selectively with lysine
amino groups and obtained the same banding pattern
as with glutaraldehyde (Supplementary Fig. 1). These
data indicate that MreB and EF-Tu can exist as
homodimers in solution and suggest that EF-Tu and
MreB interact in a 1:1 stoichiometry.

EF-Tu positively affects the formation of MreB
filaments in vitro

To investigate the effect of EF-Tu on MreB
polymerization, we turned to a system employing
purified proteins. MreB, YFP-MreB and EF-Tu could
be purified as soluble proteins using Strep affinity
tags. All proteins were purified to an apparent purity
of >95% and stored in the polymerization buffer
containing ATP (Fig. 2a). When YFP-MreB (or MreB)
was subjected to ultracentrifugation, >95% of the
protein remained in the supernatant (Fig. 2b, lanes 2
and 3; Supplementary Fig. 2, lanes 1 and 2 and
lanes 5 and 6). In contrast, the addition of MgCl,
followed by 15 min of incubation induced the
formation of MreB filaments that sedimented upon
centrifugation (Fig. 2b, lanes 4 and 5; Supplemen-
tary Fig. 2, lanes 3 and 4 and lanes 7 and 8). Addition
of EF-Tu to this reaction in a 0.5:2 molar ratio relative
to MreB resulted in an increased sedimentation of
MreB (Fig. 2b, compare lanes 4 and 5 with lanes 11
and 12; note the decrease in intensity of the soluble
fraction). When E. coli cell extract lacking EF-Tu was

loaded onto a Streptavidin column, elution fractions
did not have an influence on the polymerization of
MreB as judged from the amount found in the pellet
fraction (Supplementary Fig. 2, lanes 21 and 22).
Addition of EF-Tu in a 1:1, 2:1 and 4:1 molar ratio to
MreB further increased the amount of MreB in the
pellet (Fig. 2b, lanes 13—18; Supplementary Fig. 2,
lanes 15-20). EF-Tu alone, that is, in the absence of
MgCl,, did not induce the formation of MreB
filaments (Supplementary Fig. 2, lanes 13 and 14).
EF-Tu also appeared in the pellet fraction by itself
upon addition of MgCl, (Fig. 2b, lanes 6-10).
However, when incubated together with MreB,
more EF-Tu was found in the pellet fraction than
for EF-Tu by itself (Fig. 2b, compare lanes 9 and 10
with lanes 13 and 14), indicating that a considerable
amount of EF-Tu was bound to MreB filaments or
induced to sediment through the interaction with
MreB.

To verify these in vitro findings, we performed
fluorescence microscopy analyses, where purified
YFP-MreB was induced to form filaments on glass
slides, which is compatible with MreB polymerization.
YFP-MreB built up structures ranging from punctuated
spots to up to several micrometer-long filaments
under fluorescence microscope conditions, 10 min
after the addition of MgCls [Fig. 3b—d; Supplementary
Fig. 3a(b)-a(d)] but not in the absence of MgCl,
[Fig. 3a; Supplementary Fig. 3a(a)]. Note that many
filaments did not stick to the glass surface along their
entire length but extended away from the surface.
Many filaments appeared to be branched, curved or
helical. These findings suggest that MreB filaments
are composed of bundles of protofilaments, which are
quite flexible in terms of their architecture. It was not
possible to follow the time-resolved extension of
YFP-MreB filaments under the microscope. Appar-
ently, filaments formed rather spontaneously and
extended quickly to their average size, such that
intermediates were difficult to catch. This is consistent
with the highly rapid polymerization of MreB observed
in light-scattering experiments described below.
However, when EF-Tu was added to YFP-MreB, the
number of filaments and their length strongly in-
creased [Fig. 3e and f; Supplementary Fig. 3b(a)—b(c)]
to reach a maximum length of ~35 pm (Fig. 4a).
Note that YFP-MreB alone at an equivalent molar
concentration of YFP-MreB plus EF-Tu did not
polymerize to the same extent as both proteins
together [compare Supplementary Fig. 3c with Sup-
plementary Fig. 3b(c)]. The quantification of the
fluorescence intensity of polymerized YFP-MreB
was determined using Imaged. For accurate mea-
surements, the uneven background in the images was
first subtracted using the “Subtract Background” tool.
The measurements of the integrated fluorescence
density of the total area and the three-dimensional
graphs of the intensities of image pixels verified that
EF-Tu enhanced the assembly of MreB polymer in a
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dose-dependent manner (Fig. 4b and c). These
experiments further support the finding that EF-Tu
positively affects filament formation of MreB in vitro.

EF-Tu enhances the rate of formation of MreB
filaments

We wished to obtain information on the effect of
EF-Tu on the dynamics of filament formation of MreB
filaments and to address the question if EF-Tu acts
upon preassembled MreB filaments or during fila-
ment assembly. For this purpose, light scattering
was employed. Purified YFP-MreB (or MreB) in-
duced pronounced light scattering upon the addition
of magnesium to the system (ATP was present in the
buffer) (Fig. 2c), as described before [6]. Interest-
ingly, filament formation occurred without a lag
phase within few seconds, rather than in minutes
as described for actin filaments [27,28], revealing
that MreB has the ability to polymerize much more
rapidly than actin. Upon addition of magnesium
(10 mM MgCl,), EF-Tu showed a slow and marginal
increase in scattering compared with MreB (Fig. 2c).
These experiments show that EF-Tu does not form
fast-growing polymer structures under our experi-
mental conditions. Addition of elution fractions from
E. colilacking EF-Tu did not affect filament dynamics
of MreB or of YFP-MreB (data not shown). However,
the addition of EF-Tu to MreB in a 1:4 ratio led to a
more than 1.5-fold increment of the slope of
scattered light (Fig. 2c), showing that EF-Tu en-
hances the rate of MreB filament assembly. Adding
more EF-Tu to the reaction mixture (i.e., a 1:1 ratio
relative to MreB) induced more scattering but did not
further increase the speed of MreB polymerization
(Fig. 2c). At a lower concentration of magnesium
(5 mM MgCl,), where polymer formation is slower,
the effect of EF-Tu on MreB polymerization was even
more pronounced and resulted in a 2-fold or 3.5-fold
increase in the speed of MreB polymerization, in 1:1 or
2:1 molar ratio relative to the concentration of MreB,
respectively (Fig. 2d). Thus, at a 1:1 molar or even
lower stoichiometry, EF-Tu markedly affects the rate
and amount of polymer formation of MreB, in agree-
ment with the fluorescence microscopy analysis.

B. subtilis MreB directs the localization of
B. subtilis EF-Tu in a heterologous cell system

MreB and EF-Tu affect each other's localization in
B. subtilis cells [23] and also interact with each
other in E. coli cells [24]. On the other hand, when
heterologously expressed in E. coli, B. subtilis MreB
does not co-localize with E. coli MreB but forms
distinct filamentous structures [29]. We asked the
question if B. subtilis MreB can associate with
B. subtilis EF-Tu in a heterologous cell system.
Expression levels in E. coli cells were chosen such
that a similar level of MreB compared with B. subtilis
cells was achieved using Western blotting [29].
Although YFP-MreB filaments appeared to have a
typical arrangement described for B. subtilis in a
large fraction of the cells (about 30%), most cells
contained rather irregularly positioned filaments,
which can frequently be followed to extend through
the entire cell. E. coli cells still grew and extended
upon induction of YFP-MreB and eventually obtain-
ed a larger size (Figs. 5b and 6b), as observed
before [29]. In contrast to YFP-MreB, EF-Tu-CFP did
not form any filaments when expressed in E. coli
cells and did not induce any cell shape deformation,
indicating that B. subtilis EF-Tu does not perturb the
function of E. coli MreB or of any other morphogenic
protein. Rather, it was heterogeneously distributed
throughout the cells (Fig. 5a) or accumulated at polar
zones surrounding the nucleoids in a subpopulation of
the cells (Supplementary Fig. 4), where the bulk of the
ribosomes are present [30—32]. These findings indicate
that B. subtilis EF-Tu may function in translation in
E. coli cells but does not form filamentous structures
by itself. However, when EF-Tu-CFP and YFP-MreB
were co-expressed, defined filamentous EF-Tu-CFP
structures were observed in about 35% of cells, which
invariably co-localized with YFP-MreB filaments
(Fig. 5c, with 200 cells analyzed). Thus, B. subtilis
MreB can recruit B. subtilis EF-Tu to the filamentous
structures in vivo in a heterologous cell system, in
agreement with the findings from B. subtilis [23]. The
expression level of EF-Tu varied considerably between
individual cells, as well as the number of YFP-MreB
filaments. Therefore, it was difficult to determine if the

Fig. 2. Effect of EF-Tu on MreB filaments in vitro. (a) Coomassie-stained 12% SDS-PAGE of purified Strep-MreB,
Strep-YFP-MreB and EF-Tu-Strep. (b) Coomassie-stained SDS-PAGE of sedimentation assays; S, supernatant; P, pellet;
lane 1, total YFP-MreB used in the centrifugations; lanes 2 and 3, YFP-MreB after centrifugation; lanes 4 and 5, YFP-MreB
plus ATP and MgCl. after centrifugation; lane 6, total EF-Tu added in lanes 7—10; lanes 11-18, YFP-MreB plus ATP plus
MgCl, plus purified EF-Tu (added in 1:0.5, 1:1, 1:2 and 1:4 molar ratios to MreB). (c) Plot of light-scattering intensity of
MreB assembly as a function of time (s) in the presence or absence of EF-Tu: MreB plus ATP (filled circles), EF-Tu plus
ATP plus MgCl, (open triangles), MreB plus ATP plus MgCl, (open circles), MreB plus ATP plus EF-Tu (1:0.25 molar ratio
to MreB) plus MgCl, (open diamonds) and MreB plus ATP plus EF-Tu (1:1 molar ratio to MreB) plus MgCl, (open squares).
We added 10 mM MgCl, at minute 2 to start the formation of MreB filaments. (d) Similar experiment as described in (c), in
the presence of a lower concentration of MgCl, (5 mM): EF-Tu plus ATP plus MgCl, (open triangles), MreB plus ATP plus
MgCl, (open diamonds), MreB plus ATP plus EF-Tu (1:1 molar ratio to MreB) plus MgCl, (open squares) and MreB plus
ATP plus EF-Tu (1:2 molar ratio to MreB) plus MgCl, (open circles). We added 5 mM MgCl, at minute 2 to start the
formation of MreB filaments.
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Fig. 3. Fluorescence micrographs of purified YFP-MreB in vitro on glass slides after 10 min of incubation at 25 °C. (a)
Shown is 2 yM YFP-MreB in the presence of ATP only. (b—d) Shown is 2 pM YFP-MreB in the presence of ATP and
different concentration of MgCl,: 5 mM (b), 10 mM (c) and 20 mM (d). (e and f) Shown is the effect of EF-Tu on YFP-MreB
filaments formation in the presence of ATP and MgCl,: 2 uM YFP-MreB plus 0.5 pM EF-Tu (e) and 2 uM YFP-MreB plus

2 UM EF-Tu (f). Scale bars represent 2 um.

induction of EF-Tu had an effect on the amount or on
dynamics of MreB filaments.

MreB filaments in B. subtilis cells have a different
turnover than those formed heterologously in
E. colicells

We wished to investigate if the dynamics of MreB
filaments change when they are expressed in different
cell systems. We therefore performed time lapse and
fluorescence recovery after photobleaching (FRAP)
experiments, which reveal the dynamics and ex-
change of FP-labeled subunits of filaments with
unbound subunits, in B. subtilis cells (we bleached
an area as small as possible instead of a whole cell
half; Fig. 6a) and in a heterologous cell system, using
expression in E. coli cells (Fig. 6b). It is important to
note that N-terminally FP-labeled protein was shown
to be expressed at wild-type level and was functional
in that it complemented efficiently the mreB deletion or
depletion mutant in B. subtilis [15]. The expression
level of YFP-MreB in E. coli was set to be similar to
B. subtilis as determined by Western blotting [29].
When expressed at moderate levels (0.01 mMIPTG),
YFP-MreB formed clearly visible filamentous struc-
tures in E. coli cells (Figs. 5b and 6b). A part of an

MreB filament was bleached and recovery was
followed with 200 ms of stream acquisitions (Fig. 6a
and b). Figure 6a and ¢ shows that the turnover of
MreB filaments in B. subtilis is in the range of seconds
and, thus, much faster than what was previously
reported for MreB and Mbl (2.5-5 min), where cell
halves rather than parts of filaments were bleached
[15,33]. Half-time recovery of YFP-MreB filaments
was 18 s (Fig. 6¢), compared with a half-time of 0.3 s
for a freely diffusing protein of similar size [34] and
compared with 9-32 s for the FtsZ ring [35,36]. It is
important to point out that MreB filament movement
from non-bleached to bleached areas will contribute to
rapid protein turnover. During the time window of
YFP-MreB recovery, the distance traveled by MreB
filaments (25-75 nm/s) will be substantial. In contrast,
half-time recovery for YFP-MreB expressed in E. coli
cells was 50 + 5.3 s (Fig. 6¢). In order to investigate if
movement of filaments contributes to FRAP recovery
in E. coli cells, we performed structured illumination
microscopy (SIM) time lapse experiments, which
revealed that B. subtilis MreB filaments are largely
static in E. coli cells (Supplementary Movies 1 and 2).
Therefore, half-time recovery of 50 s represents the
true subunit exchange dynamics of MreB, when it is
expressed in a heterologous cell system. Note that
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Fig. 4. Analysis of fluorescence micrographs of purified YFP-MreB in vitro on glass slides. (a) Maximum length of MreB
filaments and (b) total fluorescence intensities of micrographs. We analyze 15-20 micrographs for each condition.
(c) Surface plot giving three-dimensional graphs of the intensities of pixels in grayscale of typical YFP-MreB micrograph at
indicated condition. Analysis were done using Imaged v1.48 [51].

there is a higher fluctuation of signals in B. subtilis cells
because the filaments are curved along the mem-
brane, in contrast to the many rather straight filaments
in E. coli cells. Thus, the turnover of B. subtilis MreB
filaments is about 2.5-fold higher in B. subtilis cells
than in E. coli cells, at least in part dependent on the
fact that MreB filaments are dynamic in B. subtilis, but
not in E. coli cells.

Discussion

Our work provides several key findings on MreB that
are of conceptual importance. Super-resolution ex-
periments have recently shown that, similar to actin

polymers, the basic structures formed by MreB are
filaments, which extend mostly for a half-turn around
the cell's circumference and sometimes even further
in B. subtilis and E. coli[37,38]. Thus, long polymers
formed by MreB in vivo can offer structural support for
long range and stable interaction between different
enzymatic complexes at or in the membrane, includ-
ing enzymes involved in cell wall synthesis.

We now show that translation elongation factor
EF-Tu affects the formation of MreB filaments and
thus a modulator of a bacterial actin-like protein.
EF-Tu has been shown to interact with MreB in vivo
and in vitro in E. coli and B. subtilis cells [23,24],
and both factors affect each other's localization in
B. subtilis cells [23]. A partial depletion of EF-Tu
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Fig. 5. Effect of MreB filaments on EF-Tu in vivo. Heterologous expression of proteins in E. coli cells, in the absence of
inducer (-IPTG for YFP-MreB/-arabinose for EF-Tu-CFP) or 60 min after induction of transcription [+IPTG (0.25 mM)/
arabinose (0.02%)]. (a) YFP-MreB, (b) EF-Tu-CFP, (c) expression of both YFP-MreB and EF-Tu-CFP from two compatible
pCDF-Duet and pBAD33 plasmids, respectively. Overlay: EF-Tu-CFP, green; YFP-MreB, red. Scale bars represent 2 pm.

does not have a strong effect on translation, but it
leads to a defect in cell shape, suggesting that EF-Tu
has an influence on cell morphology via an interaction
with MreB, in addition to its essential function in
translation [23]. In this work, we show that EF-Tu
affects the formation of MreB filaments in vitro, and
MreB affects the localization of EF-Tu in vivo in a
heterologous cell system. In agreement with their
specific interaction in vitro and in B. subtilis [23], we
show that EF-Tu and MreB co-localize in E. coli
cells and that MreB recruits EF-Tu to the filaments,
validating the findings from B. subtilis cells that both
proteins influence each other's subcellular position-
ing. The most important finding of this study is that
purified EF-Tu enhances the ability of MreB to form
filaments and increases the rate of filament formation.
The effect of EF-Tu on MreB polymer formation was
concentration dependent, and EF-Tu co-sedimented
with MreB filaments, suggesting that EF-Tu remains
bound to MreB filaments as it accelerates filament

assembly, which is also supported by the formation of
EF-Tu/MreB filaments in E. coli cells.

It is interesting to note that, in our study, MreB
filaments formed within few seconds and remained
stable for an extended time, revealing that MreB can
polymerize much faster than actin in vitro. It is
tempting to speculate that bacterial actin is more
potent in polymerizing than the eukaryotic counter-
part, which has evolved to be regulated by a multitude
of effectors. How might EF-Tu affect MreB filament
formation? Actin filaments show a high degree of
structural plasticity, and a change in the arrangement
of actin subunits via actin interactors alters filament
architecture and dynamics [39]. As EF-Tu and MreB
appear to interact at a 1:1 stoichiometry even as
monomers, as determined in cross-linking assays, as
well as co-sedimentation, EF-Tu may affect MreB
filament architecture and thereby accelerate filament
formation. EF-Tu could also affect the dynamics of
MreB filament formation by affecting ATP hydrolysis of
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Fig. 6. FRAP analysis of YFP-MreB. (a) In B. subtilis cells (JS36: Pxyl-yfo-mreB spec::amy [15]); (b) heterologously
expressed in E. colicells. White triangle indicates the area of bleaching; numbers indicate time in seconds after bleaching.
Scale bars represent 2 um. (c) Analysis of FRAP experiments from B. subtilis cells (black line) or from E. coli cells (gray
line). Plot of relative fluorescence intensity as a function of time (s), corrected for background brightness and total YFP
fading over time period. The prebleach intensity is set at 100%, and the postbleach intensity is set as “0”. The graph
represents the average of five and six FRAP experiments from B. subtilis and E. coli, respectively. Bars represent standard

error of the mean.

MreB subunits. Itis also possible that EF-Tu increases
MreB polymerization via an effect on plasticity.
Indeed, MreB has been observed in different confor-
mations within filaments in vitro [5,40], indicating a
high degree of structural flexibility.

Lowered levels of EF-Tu lead to the formation of
fewer aberrantly localized MreB filaments in B. subtilis
[23]. Our data showing that EF-Tu is recruited to
filamentous MreB structures in a heterologous cell
system support the model that MreB is able to direct

the localization of EF-Tu in vivo. EF-Tu structures
underneath the cell membrane are much more static
than MreB filaments in B. subtilis [23], such that EF-Tu
structures could serve as tracks for MreB filaments. In
turn, EF-Tu may stimulate the assembly of MreB
filaments, which could extend and retract along EF-Tu
structures. Interestingly, we show in this work that
B. subtilis MreB filaments have a higher turnover in
B. subtilis cells than in E. coli cells, as determined
using FRAP. Half-time recovery of MreB filaments is
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18 s in B. subtilis cells and is 50 s when expressed
heterologously in E. colicells. However, slower FRAP
recovery in E. coli cells is at least partially due to the
fact that heterologously expressed MreB filaments do
not move in a circumferential manner, and thus, the
50-s half-time recovery rate actually reflects the true
subunit exchange kinetics within MreB filaments.
These experiments reveal that the turnover of MreB
filaments is much higher than previously anticipated
[15,33] and is also much higher than that of E. coli
MreB expressed in fission yeast cells [41] but is similar
to that of the FtsZ ring structure at mid-cell [35]. Of
note, both the movement of complete polymers and
the exchange of monomers are the basis for the fast
recovery observed for MreB in the cell during FRAP
experiments. Our data thus show that MreB filament
dynamics are markedly different in different cellular
contexts.

Among bacterial cytoskeletal proteins, the regula-
tion of polymer formation for the tubulin-like protein
FtsZ that builds up the cytokinetic Z-ring is well
understood [42,43]. In contrast, the cellular factors
regulating the dynamics of MreB filaments and thus its
function are poorly unveiled. Our previous work has
revealed an interplay between MreB and EF-Tu [23].
Recently, it was shown that chromosomally encoded
toxin—antitoxin systems can inhibit the polymerization
or promote the bundling of both MreB and FtsZ in
E. coli [44—-46]. We demonstrate in our present work
that the activity of MreB filaments can be modulated
by an additional factor in B. subtilis and that EF-Tu
directly affects filament formation of MreB. Interest-
ingly, the eukaryotic ortholog of EF-Tu, elongation
factor EF-1q, also interacts with actin and influences
actin filaments [47—49], apparently through bundling
of actin filaments [50]. Thus, the interaction EF-Tu/
MreB and EF-1a/actin is evolutionarily conserved
and apparently highly relevant for the physiology of
the cell.

Materials and Methods

Plasmids construction

pJS63 (SMPr1;,.-Strep-tag-mreB) was constructed by
amplification of the Strep-mreB sequence from B. subtilis
wild-type (PY79) chromosomal DNA using an upstream
primer containing the Strep-tag sequence. The resulted
PCR product was inserted between Ndel and Xhol
restriction sites in pCDFDuet vector (from Novagen). For
pJS64 (sm Pr;,c-Strep-tag-yfo-mreB), the Strep-yfo-mreB
sequence was amplified from pJS24 [15] plasmid (bla
amyE::Pxyl-yfo-mreB spec) using an upstream primer
containing Strep-tag sequence. The resulted PCR product
was inserted between Ndel and Xhol restriction sites in
pCDFDuet vector. For pJS65 (bla P17, tufA-Strep-tag),
the tufA-Strep-tag sequence was amplified from the
chromosomal DNA of B. subtilis wild type (PY79) using a
downstream primer containing Strep-tag sequence. The

resulted PCR product was inserted between Ndel and
Xhol restriction sites in pETDuet vector (from Novagen).
For pJS66 (bla Prz-tufA-Bscfp-Strep), the tufA-Bscip-
Strep-tag sequence was amplified from the JS88 strain
(tufA-Bscfp) [23] using a downstream primer containing
Strep-tag sequence. The resulted PCR product was inserted
between Ndel and Xhol restriction sites in pETDuet vector.
For pJS67 (bla P17 tufA-His-tag), tufA-His-tag sequence
was amplified from B. subtilis (wild-type) chromosomal DNA
using a downstream primer containing His-fag sequence.
The resulting PCR product was inserted between Ndel
and Xhol in pETDuet vector. Low expression of EF-Tu or
EF-Tu-BsCFP was achieved using pBAD33 plasmid that
bears a tight arabinose promoter. The tufA or tufA-Bscfp gene
was amplified as described above and inserted between Kpnl
and Hindlll in pBAD33 generating pJS80 (cat Pgap-tufA) and
pJS81 (cat Pgap-tufA-Bscip), respectively.

Expression and purification of proteins

E. coli BL21(ADE3) cells transformed with pJS63 and
pJS67 (for Strep-MreB and EF-Tu-His co-purification
strain), pJS63, pJS64 or pJS65 were inoculated in
400 ml of LB supplemented with Streptomycin (50 pg/ml)
or ampicillin (100 pg/ml) and grown at 37 °C until an ODggo
reached 0.6—0.8. The expression of proteins was induced
by adding 1 mM IPTG to the culture, which was left to grow
for an additional 4 h. Cells were spun down at 6000 rpm
at 4 °C for 15 min and the pellet was quickly frozen in
liquid nitrogen and stored at —80 °C until use. Cells were
disrupted with a French press in appropriate buffers and
the lysate was cleared by centrifugation at 16,000 rpm and
4 °C for 30 min. Strep-tagged proteins were purified using
Strep-tag purification kit purchased from IBA GmbH. The
purified proteins were dialyzed against the polymerization
buffer [5 mM Tris—CI (pH 7.4), 0.1 mM CaCl, and 0.2 mM
ATP] before storage.

Cross-linking assay

Cross-linking with glutaraldehyde was carried out in
100 mM phosphate buffer (pH 8.0) at room temperature.
Strep-MreB and EF-Tu-His eluted from Streptavidin
column were incubated with 0.05% glutaraldehyde for 5,
10 and 15 min, respectively. The reactions were quenched
by the addition of 100 mM Tris (pH 7.5), and samples were
resolved on 8% SDS-PAGE. BS3 reactions were per-
formed likewise, except that the cross-linking time was
prolonged 15, 30 and 45 min, respectively, with 0.5 mM
BS3. The experiment was performed in duplicate. One gel
was silver stain for direct visualization of the proteins bands
and the proteins from the second gel were transferred to
nitrocellulose membrane. MreB was detected by Western
blotting with anti-MreB antibodies.

In vitro polymerization assay

For the fluorescence microscopy analysis of YFP-MreB,
clarified (centrifugation at 100,000g for 15 min at 4 °C)
Strep-YFP-MreB (2 pM) was added to the polymerization
buffer [5 mM Tris—CI (pH 7.4), 0.1 mM CacCl, and 0.2 mM
ATP] and the polymerization was initiated by adding 5 mM
MgCl,. The mixture was incubated at room temperature for
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about 10 min prior to the microscopy. To assess the effect
of EF-Tu on the formation of MreB Polymers, we added
EF-Tu-Strep to the mixture before incubation.

For sedimentation assays, 10 uM or 20 pM of clarified
Strep-MreB or Strep-YFP-MreB was added to the poly-
merization buffer and the mixture was incubated at room
temperature with or without MgCl, (5 mM) for 15 min. For
co-sedimentation assay, EF-Tu-Strep was added to the
mixture at different ratio relative to Strep-MreB or
Strep-YFP-MreB before incubation. Afterwards, protein
samples were centrifuged at 100,000g for 20 min at 4 °C.
Supermatants and pellets (resuspended in an equal volume
as the supernatants) were analyzed by SDS-PAGE and
Coomassie blue staining.

Light-scattering assay

Light scattering was measured at 418 nm after excitation
at 315 nm in a Shimadzu RF-5001PC or PerkinElmer LS55
fluorimeter. The scattered light intensity was measured atan
angle of 90° from the direction of the incident light. The
temperature was set in the cuvette (Quartz SUPRASIL
Ultra-micro from PerkinElmer) at 25 °C. Appropriate con-
centration of proteins samples was added to the polymer-
ization buffer to a final volume of 100 pl. The mixture was
equilibrated at 25 °C for 2 min before adding magnesium
that triggered the polymerization.

Microscopy and FRAP analysis

Epi-fluorescence microscopy was performed using a
Zeiss Axio Imager equipped with a digital charge-coupled
device camera and total internal reflection fluorescence
objective with an aperture of 1.45. Images were captured
using Metamorph 6.3 software. FRAP experiments were
performed on a Zeiss Axio Observer using a 405-nm laser
focussed to a 1-um beam at the focal plane (Visitron,
Munich, Germany). Images were analyzed using Meta-
morph 6.3 or ImageJ (v1.46r; Rasband WS, ImageJ, US
National Institutes of Health, Bethesda, MD, USA, 1997—
2012) [51]. For stack alignment of images, the StackReg
plugin was used [52]. Gradual bleaching of the image during
acquisition was compensated by normalizing the fluores-
cence of the bleached region to the integral fluorescence of
the entire cell in the same image, and background fluores-
cence was subtracted. The relative fluorescence intensity of
the region of interest of the image sequence was normalized
to the relative region of interest intensity before bleaching.
Time lapse microscopy of E. coli cells expressing YFP-BsM-
reB was acquired by SIM using a Zeiss Elyra system.

Filament length and fluorescence intensity
measurements

Filament length and fluorescence intensities were
measured using ImageJ' (v1.48; Rasband WS, ImagelJ,
US National Institutes of Health, Bethesda, MD, USA,
1997-2014) [51]. Before measurements, background in the
images was subtracted using the “Subtract Background”
tool. The “Rolling Ball Radius” was set to the default value of
50.0 pixels. Filaments length was measured using “Free-
hand Line Selection” tool and fluorescence intensity
measurements were set to measure the integrated fluores-

cence density of the total area in images. “Surface Plot”
tool was used to obtain a three-dimensional graph of the
intensities of pixels in a grayscale.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jmb.2015.01.025.
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