
Wavelets and filterbanks 

Mallat 2009, Chapter 7 



Outline 

•  Wavelets and Filterbanks 

•  Biorthogonal bases 

•  The dual perspective: from FB to wavelet bases 
–  Biorthogonal FB 
–  Perfect reconstruction conditions 

•  Separable bases (2D) 

•  Overcomplete bases 
–  Wavelet frames (algorithme à trous, DDWF) 
–  Curvelets 



Wavelets and Filterbanks 

Wavelet side 

•  Scaling function 
–  Design (from multiresolution 

priors) 
–  Signal approximation 
–  Corresponding filtering operation 

§  Condition on the filter h[n] → 
Conjugate Mirror Filter (CMF) 

•  Corresponding wavelet 
families 

Filterbank side 

•  Perfect reconstruction 
conditions (PR) 
–  Reversibility of the transform 

•  Equivalence with the 
conditions on the wavelet 
filters 
–  Special case: CMFs → 

Orhogonal wavelets 
–  General case  →   Biorthogonal 

wavelets 

 



Wavelets and filterbanks 

•  The decomposition coefficients in a wavelet orthogonal basis are computed with a fast 
algorithm that cascades discrete convolutions with h and g, and subsample the output 

•  Fast orthogonal WT 

{ }

0 0

* *
0

( ) [ ] ( )

[ ] ( ), ( ) ( ) ( ) ( ) ( ) * ( )

( ) ( )

Since (t-n)  is an orthonormal basis
n

n

f t a n t n V

a n f t t n f t t n dt f t n t dt f n

t t

ϕ

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

∈Ζ

+∞ +∞

−∞ −∞

= − ∈

= − = − = − =

= −

∑

∫ ∫



Linking the domains 
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f [n]↔ f (z) = f [k]z−k
k=−∞
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∑

f [n−1]↔ z−1 f (z) unit delay

f [−n]↔ f z−1( ) reverse the order of the coefficients

(−1)n f [n]↔ f (−z) negate odd terms

Switching between the 
Fourier and the z-domain 

Switching between the time 
and the z-domain 



Fast orthogonal wavelet transform 

•  Fast FB algorithm that computes the orthogonal wavelet coefficients of a discrete signal 
a0[n]. Let us define 

 
Since                                is orthonormal, then 
 
 

•  A fast wavelet transform decomposes successively each approximation PVjf in the coarser 
approximation PVj+1f plus the wavelet coefficients carried by PWj+1f. 

•  In the reconstruction, PVjf is recovered from PVj+1f and PWj+1f for decreasing values of j 
starting from J (decomposition depth) 
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Fast wavelet transform 

•  Theorem 7.7 
–  At the decomposition 

–  At the reconstruction 
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Proof: decomposition (1) 
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Proof: decomposition (2) qui 

•  Coming back to the projection coefficients 

•  Similarly, one can prove the relations for both the details and the reconstruction formula 

a j+1[ p]= f ,ϕ j+1,p = f , h[n− 2p]
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Proof: decomposition (3) 

•  Details 
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Proof: Reconstruction 
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CVD 

Since Wj+1 is the orthonormal complement of Vj+1 in Vj, the union of the two respective basis is a basis 
for Vj. Hence 



Graphically 

aj p[ ] = h p− 2n[ ]
n
∑ aj+1 n[ ] = aj+1 n[ ]h p− 2n[ ]

n
∑

aj 0[ ] = h −2n[ ]
n
∑ aj+1 n[ ] = aj+1 n[ ]h −2n[ ]

n
∑

Let's assume that h is symmetric

aj 0[ ] = aj+1 n[ ]h 2n[ ]
n
∑

n0 1 2 

n0 1 2 

aj+1[n] 

h[n] 



Graphically 

n0 1 2 
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h[n] 

aj+1 n[ ]

aj 0[ ] = aj+1 n[ ]h 2n[ ]
n
∑ =
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Summary 

•  The coefficients aj+1 and dj+1 are computed by taking every other sample of the convolution 
of aj with        and           respectively. 

•  The filter      removes the higher frequencies of the inner product sequence aj , whereas      
is a high-pass filter that collects the remaining highest frequencies.  

•  The reconstruction is an interpolation that inserts zeroes to expand aj+1 and dj+1 and filters 
these signals, as shown in Figure. 

h g
h g

a j+1[ p]= a j ∗h[2p]



Filterbank implementation 
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Fast DWT 

•  Theorem 7.10 proves that aj+1 and dj+1 are computed by taking every other sample of the 
convolution on aj with       and       respectively 

•  The filter h removes the higher frequencies of the inner product and the filter g is a band-
pass filter that collects such residual frequencies 

•  An orthonormal wavelet representation is composed of wavelet coefficients at scales                          

 plus the remaining approximation at scale 2J 

h g

1 2 2j J≤ ≤
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d a
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⎡ ⎤
⎢ ⎥⎣ ⎦



Summary 
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Analysis or decomposition Synthesis or reconstruction 
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The fast orthogonal WT is implemented by a filterbank that is 
completely specified by the filter h, which is a CMF 
The filters are the same for every j 

↑2 h 

↑2 g 
ja

Teorem 7.2 (Mallat&Meyer) and Theorem 7.3 [Mallat&Meyer] 
 



Filter bank perspective 
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Taking h[n] as reference (which amounts to choosing the synthesis low-pass filter) the following 
relations hold for an orthogonal filter bank: 
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neglecting the unitary shift, as usually done in applications
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Finite signals 

•  Issue: signal extension at borders 

•  Possible solutions: 
–  Periodic extension 

§  Works with any kind of wavelet 
§  Generates large coefficients at the borders 

–  Symmetryc/antisymmetric extension, depending on the wavelet symmetry 
§  More difficult implementation 
§  Haar filter is the only symmetric filter with compact support 

–  Use different wavelets at boundary (boundary wavelets) 
–  Implementation by lifting steps 



Wavelet graphs 



Orthogonal wavelet representation 

•  An orthogonal wavelet representation of aL=< f ,ϕL,n> is composed of wavelet coefficients 
of f at scales 2L<2j<=2J , plus the remaining approximation at the largest scale 2J : 

•  Initialization 
–  Let b[n] be the discrete time input signal and let N-1 be the sampling period, such that the 

corresponding scale is 2L=N-1 

–  Then:  

original continuous 
time signal discrete time signal interpolation function 

N-1: discrete sample distance 
2L= N-1 scale 



Initialization 
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N-1: discrete sample distance 
2L= N-1 scale 

Basis for VL 



The filter bank perspective 



Perfect reconstruction FB 

•  Dual perspective: given a filterbank consisting of 4 filters, we derive the perfect 
reconstruction conditions 

•  Goal: determine the conditions on the filters ensuring that 

a0 ≡ a0

↓2 h

↓2 g
0a

1a

1d

↑2 h 

↑2 g ~ 

~ 

a0



PR Filter banks 

•  The decomposition of a discrete signal in a multirate filter bank is interpreted as an 
expansion in l2(Z) 

[ ] [ ] [ ] [ ] [ ]1 0 0 0[ ] * 2 2 2
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a l a h l a n h l n a n h n l= = − = −∑ ∑
since 

then 

and the signal is recovered by the reconstruction filter 

thus 

dual family of vectors 

points to 
biorthogonal 

wavelets 



The two families are biorthogonal 

Thus, a PR FB projects a discrete time signals over a biorthogonal basis of l2(Z). 
If the dual basis is the same as the original basis than the projection is orthonormal. 



Discrete Wavelet basis 

•  Question: why bother with the construction of wavelet basis if a PR FB can do the same 
easily? 

•  Answer: because conjugate mirror filters are most often used in filter banks that cascade 
several levels of filterings and subsamplings. Thus, it is necessary to understand the 
behavior of such a cascade 
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N-1: discrete sample distance 
2L= N-1 scale 

discrete signal at scale 2L 

for depth j>L 



Discrete wavelet basis 



Perfect reconstruction FB 

•  Theorem 7.7 (Vetterli) The FB performs an exact reconstruction for any input signal iif 
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ĥ* ω +π( ) ̂h(ω)+ ĝ* ω +π( ) ̂g(ω) = 0

)(ˆ)(ˆ)(ˆ)(ˆ)(

)(ˆ
)(ˆ

)(
2

)(~̂
)(~̂

*

*

ωπωπωωω

πω

πω

ωω

ω

ghgh

h
g

g
h

+−+=Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−

+

Δ
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Matrix notations 

(alias free) 

When all the filters are FIR, the determinant can be evaluated, which yields simpler 
relations between the decomposition and the reconstruction filters. 



Changing the sampling rate 

•  Downsampling 

•  Upsampling 
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Subsampling: proof 
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Perfect Reconstruction conditions 
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Perfect Reconstruction conditions 

•  Putting all together 
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+
1
2
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Perfect reconstruction biorhogonal filters 

•  Theorem 7.8. Perfect reconstruction filters also satisfy 

 Furthermore, if the filters have a finite impulse response there exists a in R and l in Z such 
that 

 

 

 

 

 

 

•  Conjugate Mirror Filters:  

ĥ* ω( ) ̂h(ω)+ ĥ* ω +π( ) ̂h(ω +π ) = 2
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2
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Perfect reconstruction biorthogonal filters qui 

 Given h and      and setting a=1 and l=0 in (2) the remaining filters are given by the following 
relations 

§  The filters h and     are related to the scaling functions φ and ~φ via the corresponding two-scale relations, 
as was the case for the orthogonal filters (see eq. 1). 

 Switching to the z-domain 
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Biorthogonal filter banks 

•  A 2-channel multirate filter bank convolves a signal a0 with  

 a low pass filter                     

 and a high pass filter 

 and sub-samples the output by 2 

 

 

 A reconstructed signal ã0 is obtained by filtering the zero-expanded signals with a dual low-pass           
and high pass filter   

 

 

 

 Imposing the PR condition (output signal=input signal) one gets the relations that the different filters 
must satisfy (Theorem 7.7) 
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Revisiting the orthogonal case (CMF) 

h 

g g 

h ↓2 

↓2 

↑2 

↑2 

+ 
a0 

_ 

ă0 

_ 

Taking                              as reference (which amounts to choosing the analysis low-pass filter) the 
following relations hold for an orthogonal filter bank: 

1
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synthesis low-pass (interpolation) filter: 
reverse the order of the coefficients 

negate every other sample 

[ ] [ ]h n h n= −



Orthogonal vs biorthogonal PRFB 
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ĥ* ω( ) ̂h(ω)+ ĥ* ω +π( ) ̂h(ω +π ) = 2
ĝ(ω) = e− jω ̂h*(ω +π )
̂g(ω) = e− jωh*(ω +π )

In the signal domain
g[n]= (−1)1−n h[1− n]
g[n]= (−1)1−n h[1− n]

h ≠ h h = h

ĥ ω( )
2
+ ĥ ω +π( )

2
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g = g

Biorthogonal PRFB Orthogonal PRFB 



Fast BWT 

•  Two different sets of basis functions are used for analysis and synthesis 

•  PR filterbank 
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Be careful with notations! 

•  In the simplified notation where  
–  h[n] is the analysis low pass filter and g[n] is the analysis band pass filter, as it is the case in most of the 

literature; 
–  the delay factor is not made explicit; 

•   The relations among the filters modify as follows 
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−= Slightly different formulation: the 
high pass filters are obtained by 
the low pass filters by negating 
the odd terms 



Biorthogonal bases 

Orthonormal basis 

{en}n∈N: basis of Hilbert space 

Ortogonality condition < en, ep>=0     ∀n≠p 

∀y ∈ H,      

There exists a sequence 
 

 

 

 

|en|2=1  ortho-normal basis 
 

Bi-orthogonal basis 

{en}n∈N: linearly independent 

∀y ∈ H,     ∃A>0 and B>0 : 

                    
 

 

 

 

Biorthogonality condition:  

 

 

 

A=B=1 ⇒ orthogonal basis 
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Biorthogonal bases 

If h and h are FIR

̂Φ ω( ) =
̂h 2− pω( )

2p=1

+∞

∏ ̂Φ(0), Φ̂ ω( ) =
ĥ 2− pω( )

2p=1

+∞

∏ Φ̂(0)

The functions φ̂  and ̂φ  satisfy the biorthogonality relation
ϕ(t), ϕ(t − n) = δ[n]

The two wavelet families ψ
j,n{ }

( j ,n)∈Z 2
 and  ψ

j,n{ }
( j ,n)∈Z 2

 are Riesz bases of L2(R)

ψ
j ,n
, ψ

j ' ,n'
= δ[n− n ']δ[ j − j ']

Though, some other conditions must be imposed to guarantee that φ^ and φ^tilde are FT of 
finite energy functions. The theorem from Cohen, Daubechies and Feaveau provides sufficient 
conditions (Theorem 7.10 in M1999 and Theorem 7.13 in M2009) 

Any f ∈ L2 R( )  has two possible decompositions in these bases

f = f ,ψ j ,n
n, j
∑ ψ j ,n = f , ψ j ,n

n, j
∑ ψ j ,n



Reminder 



Summary of Biorthogonality relations 

•  An infinite cascade of PR filter banks                       yields two scaling functions and two wavelets 
whose Fourier transform satisfy 

)~,~(),,( ghgh

Φ̂ 2ω( ) = 1
2
ĥ ω( )Φ̂ ω( ) ↔ ϕ

t
2
#

$
%
&

'
(= h[n]ϕ t − n( )

n=−∞

+∞

∑ (i)

̂Φ 2ω( ) = 1
2
̂h ω( ) ̂Φ ω( ) ↔ ϕ t

2
#

$
%
&

'
(= h[n] ϕ t − n( )

n=−∞

+∞

∑ (ii)

Ψ̂ 2ω( ) = 1
2
ĝ ω( )Φ̂ ω( ) ↔ ψ

t
2
#

$
%
&

'
(= g[n]ϕ t − n( )

n=−∞

+∞

∑ (iii)

̂Ψ 2ω( ) = 1
2
̂g ω( ) ̂Φ ω( ) ↔ ψ t

2
#

$
%
&

'
(= g[n] ϕ t − n( )

n=−∞

+∞

∑ (iv)



Properties of biorthogonal filters 

 Imposing the zero average condition to ψ in equations (iii) and (iv) 

 

 

 

 

 

 

 

  

Ψ̂(0) = ̂Ψ(0) = 0 → ĝ(0) = ̂g(0) = 0
replacing into the relations (3) (also shown below)

ĝ(ω) = e−iω ̂h*(ω +π ) ̂g(ω) = e−iω ĥ*(ω +π )→ ĥ*(π ) = ̂h(π ) = 0
Furthermore, replacing such values in the  PR condition (1)

ĥ*(ω) ̂h(ω)+ ĝ*(ω) ̂g(ω) = 2→ ĥ*(0) ̂h(0) = 2
It is common choice to set

ĥ*(0) = ̂h(0) = 2



Biorthogonal bases 

•  If the decomposition and reconstruction filters are different, the resulting bases is non-
orthogonal 

•  The cascade of J levels is equivalent to a signal decomposition over a non-orthogonal basis 

•  The dual bases is needed for reconstruction  

{ } { }
1 ,

2 , 2J j
J jn j J n
k n k nϕ ψ

∈Ζ ≤ ≤ ∈Ζ

⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦



Example: bior3.5 



Example: bior3.5 



Biorthogonal bases 



Biorthogonal bases 



CMF : orhtogonal filters 

•  PR filter banks decompose the signals in a basis of l2(Z). This basis is orthogonal for Conjugate 
Mirror Filters (CMF). 

•  [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called 
CMFs 

–  Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes 

–  Correspondingly 

ĥ*(ω) ̂h(ω)+ ĥ*(ω +π ) ̂h(ω +π ) = 2   (1) →
ĥ*(ω)ĥ(ω)+ ĥ*(ω +π )ĥ(ω +π ) = 2→
| ĥ(ω) |2 + | ĥ(ω +π ) |2= 2
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Summary 

•  PR filter banks decompose the signals in a basis of l2(Z). This basis is orthogonal for Conjugate 
Mirror Filters (CMF). 

•  [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called 
CMFs 

–  Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes 

–  Correspondingly 
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2)(ˆ)(ˆ)(ˆ)(ˆ
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Properties 

•  Support 
–  h,     are FIR → scaling functions and wavelets have compact support 

•  Vanishing moments 
–  The number of vanishing moments of Ψ is equal to the order     of zeros of    in π. Similarly, the 

number of vanishing moments of      is equal to the order p of zeros of h in π.  

•  Regularity 
–  One can show that the regularity of  Ψ and φ increases with the number of vanishing moments 

of   , thus with the order p of zeros of h in π.  
–  Viceversa, the regularity of     and                increases with the number of vanishing moments of 
Ψ, thus with the order     of zeros of       in π. 

•  Symmetry 
–  It is possible to construct both symmetric and anti-symmetric bases using linear phase filters 

§  In the orthogonal case only the Haar filter is possible as FIR solution. 

h~

p~ h~
ψ~

ψ~ ϕ~
ψ~

p~ h~


