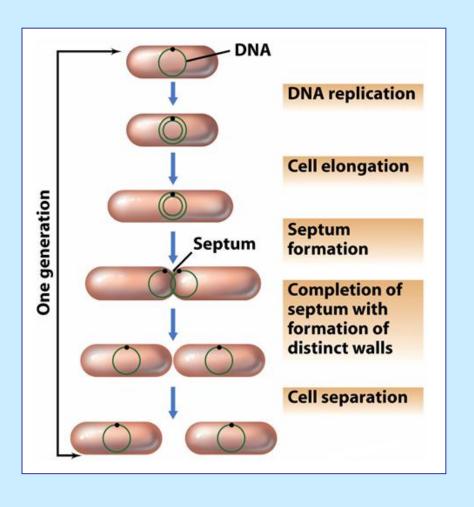


Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

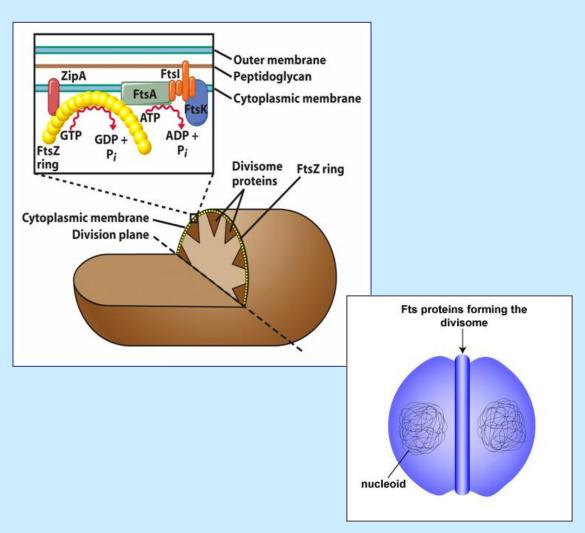
" I wish you'd learn to put the lid on your Petri Dish, Harry..!! We came here with four kids and now it looks like we've got twenty million!!"

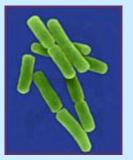


Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

La crescita microbica





Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

DIVISOME PROTEINS

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

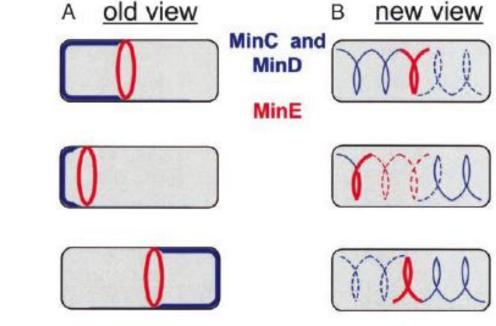
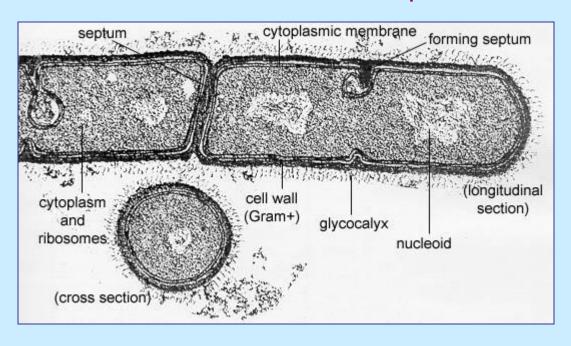
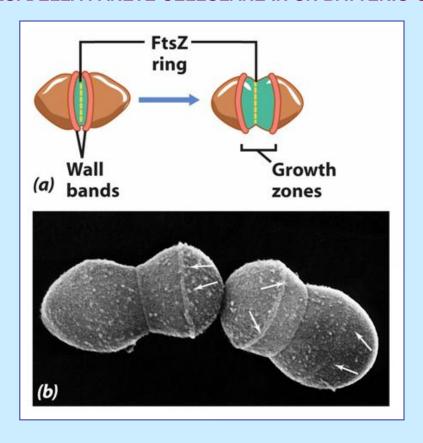


Fig. 1. The old view of the organization of MinC, MinD, and MinE proteins within *E. coli* and a new view based on the observations of Shih *et al.* (4) in this issue of PNAS. (A) In the old view, MinC and MinD (shown in blue) were thought to be diffusely present at one pole at a time and to oscillate between poles. MinE (shown in red) was thought to be a ring that oscillated around the midcell position. (*B*) In the new view, MinC and MinD (blue) are organized into spiral structures, and, although the bulk of MinC and MinD oscillates from pole to pole, a small amount is always present at both poles. MinE (red) is also organized into a spiral that can be seen to extend to the poles.



Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

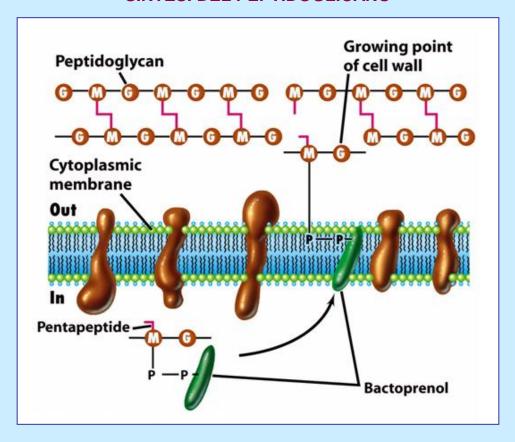
Scissione binaria di un batterio Gram positivo

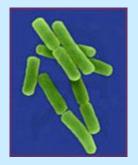


Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

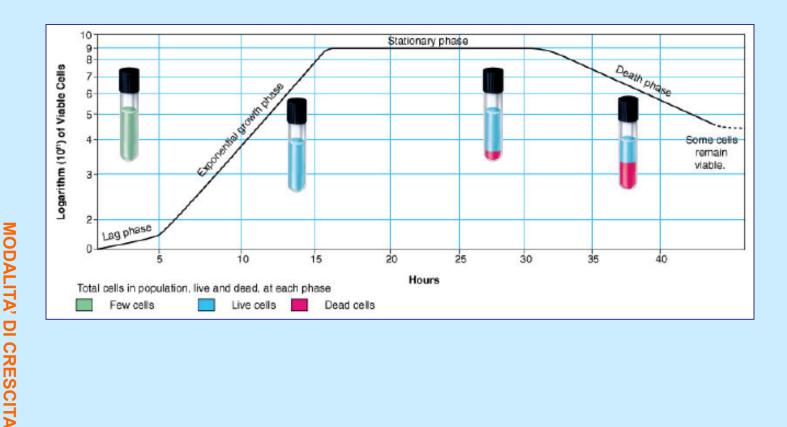
SINTESI DELLA PARETE CELLULARE IN UN BATTERIO Gram +



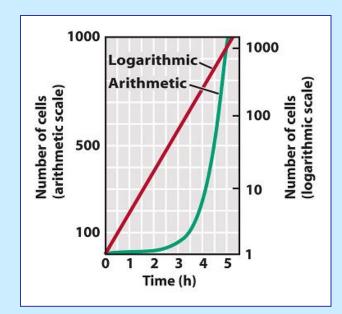


Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

SINTESI DEL PEPTIDOGLICANO



La crescita microbica



IL TASSO DI CRESCITA DI UNA COLTURA BATTERICA

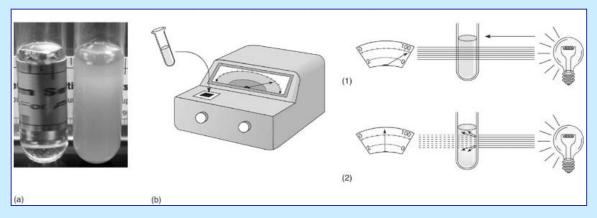
Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

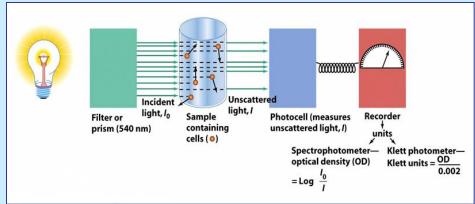
Time (h)	Total number of cells	Time (h)	Total number of cells
0	1	4	256 (2 ⁸)
0.5	2	4.5	512 (2 ⁹)
1	4	5	1,024 (2 ¹⁰)
1.5	8	5.5	2,048 (2 ¹¹)
2	16	6	4,096 (2 ¹²)
2.5	32	•	•
3	64	•	
3.5	128	10	1,048,576 (2 ¹⁹)

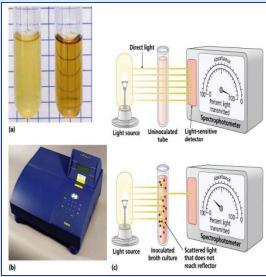
Equation for calculating population size over time:

$$N_f = (N_i)2^n$$

 N_f is total number of cells in the population. N_i is starting number of cells. Exponent *n* denotes the number of generations





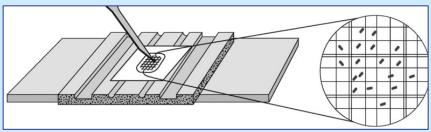

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

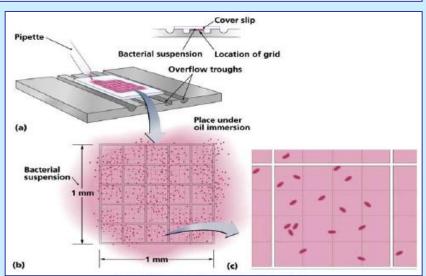
Conta delle cellule batteriche mediante turbidimetro (nefelometro)

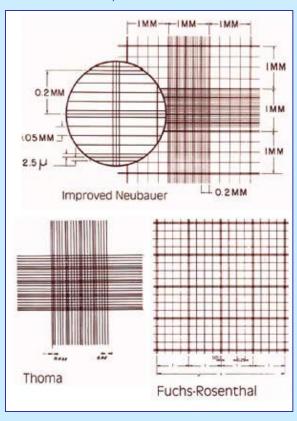
(OD = optical density; assorbanza espressa in NTU = nephelometric turbidity units)

STIMA DELLA

CRESCITA





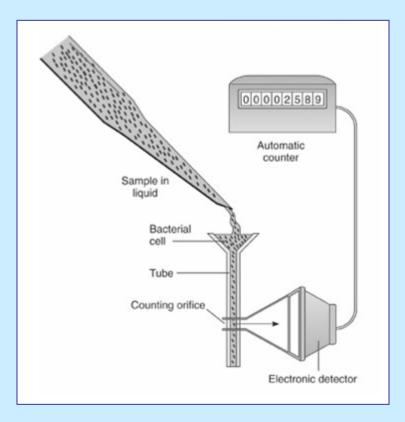

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Conta delle cellule batteriche mediante ematocitometro

(es. Camera di Thoma modificata da Helber: profondità 0.02 mm, superficie del quadrato centrale 0.0025 mm²)

La crescita microbica

A CRESCITA



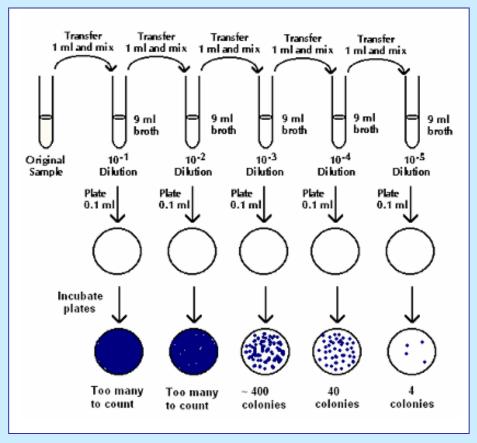
Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Conta batterica mediante lettore automatico

La crescita microbica

A CRESCITA

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.


Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

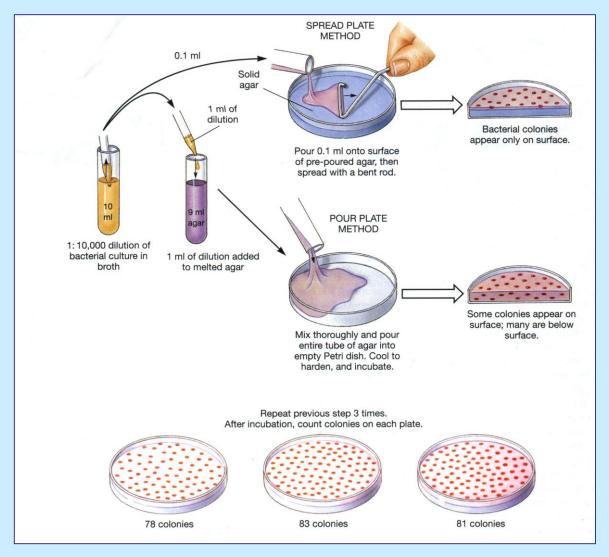
Conta microbica diretta mediante il metodo del piastraggio delle sospensioni/diluizioni seriali

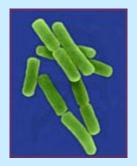
 CFU ml
 in original sample = # colonies counted

 (dilution factor)(volume plated, in ml)

(CFU = colony forming units)

A CRESCITA

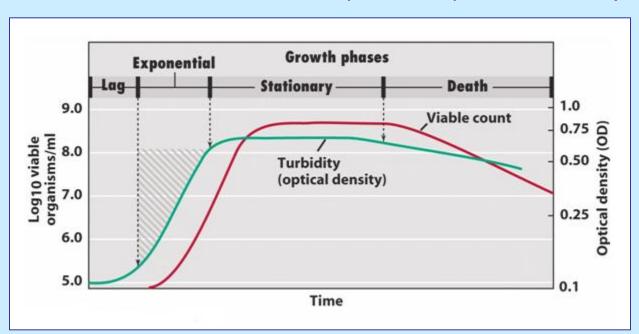




TIMA DELLA CRESCITA

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

CONTA MICROBICA SU PIASTRA


Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini



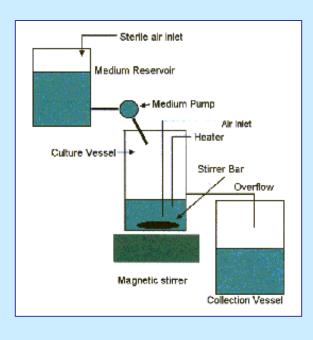
STIMA DELLA CRESCITA

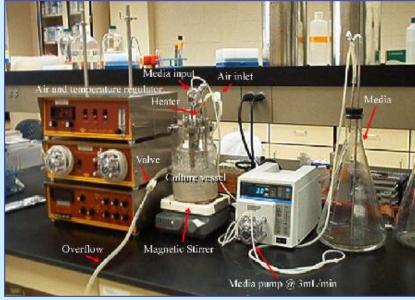
Effetto deli nutrienti sulla crescita microbica in coltura discontinua (batch culture)

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

A CRESCITA IN CONTINUO





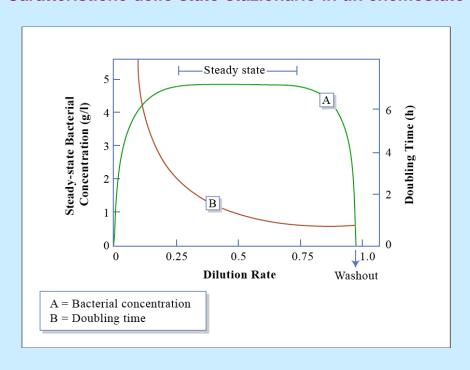
Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini


IL CHEMOSTATO

La crescita microbica

LA CRESCITA IN CONTINUO

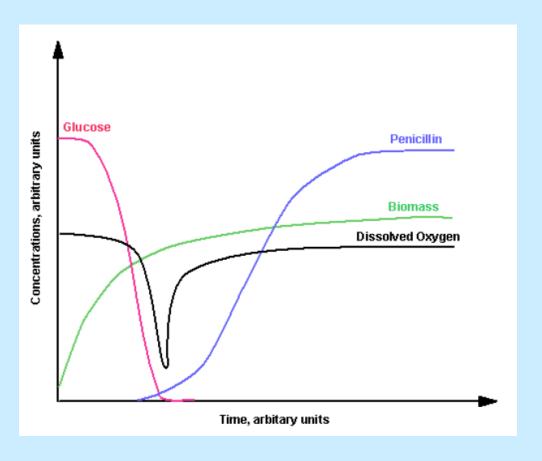


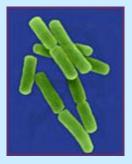

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Caratteristiche dello stato stazionario in un chemostato

La crescita microbica

_A CRESCITA IN CONTINUO

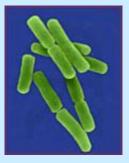



Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Crescita microbica con produzione di metaboliti secondari

La crescita microbica

TROFOFASE / IDIOFASE



Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

- Nutrition
- Environment

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Nutrition

Bacterial needs:

MAJOR ELEMENTS (C, H, O, N, P, S, K, Mg, Na, Ca, Fe)

- Essential elements that make up cell parts and macromolecules
 - Source of C defines groups of bacteria:
 - Heterotrophs
 - Autotrophs
- Other elements can be derived from inorganic salts

TRACE ELEMENTS (B, Cr, Co, Cu, Mn, Mo, Ni, Se, W, V, Zn)

 Elements needed in minute amounts, usually for enzyme functioning

GROWTH FACTORS (vitamins, amino acids, etc.)

Organic compounds required in small amounts that microbes can not synthesised by themselves

La crescita microbica

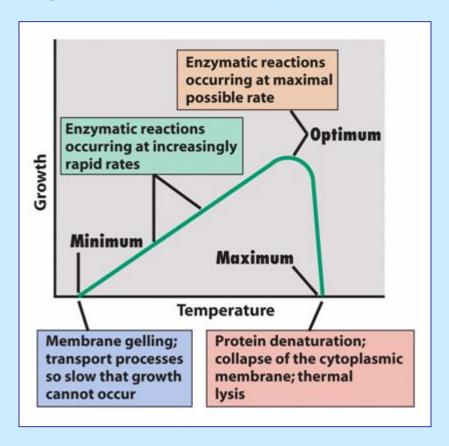
CRESCITA

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Environment

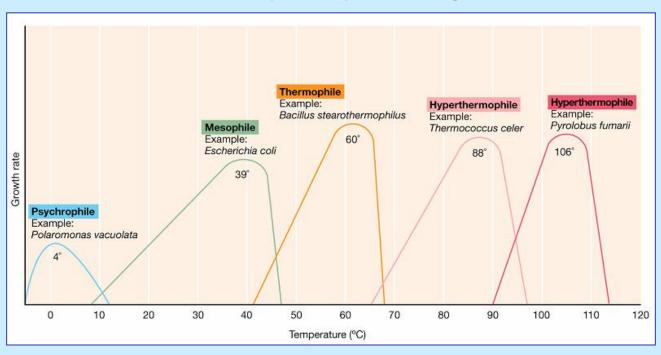
- Temperature
 - pH
- Oxygen concentration
 - Salinity

FATTORI CHE INFLUENZANO LA CRESCITA



Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Effetto della temperatura sul tasso di crescita e conseguenze a livello molecolare per la cellula microbica



Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

OPTIMA di temperatura per i microorganismi

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

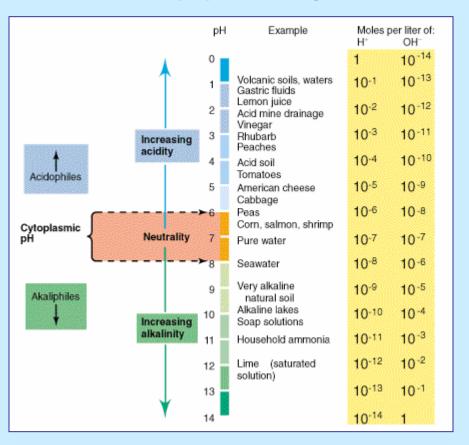
Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Presently known upper temperature limits for growth of living organisms

Group	Upper temperature limits (°C)
Animals	
Fish and other aquatic vertebrates	38
Insects	45-50
Ostracods (crustaceans)	49-50
Plants	
Vascular plants	45
Mosses	50
Eukaryotic microorganisms	
Protozoa	56
Algae	55-60
Fungi	60-62
Prokaryotes	
Bacteria	
Cyanobacteria	70-74
Anoxygenic phototrophs	70-73
Chemoorganotrophic/chemolithotrophic Bacteria	95
Archaea	
Chemoorganotrophic/chemolithotrophic Archaea	113ª

^a The upper temperature limit for growth of the organism *Pyrolobus fumarii*. Related species of *Pyrodictium* may be able to grow up to as high as 121°C.



FATTORI CHE INFLUENZANO LA CRESCITA

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

OPTIMA di pH per i microorganismi

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Table 6.4 Oxygen relationships of microorganisms						
Group	Relationship to O ₂	Type of metabolism	Example ^a	Habitat ^b		
Aerobes						
Obligate	Required	Aerobic respiration	Micrococcus luteus (B)	Skin, dust		
Facultative	Not required, but growth better with O ₂	Aerobic respiration, anaerobic respiration, fermentation	Escherichia coli (B)	Mammalian large intestine		
Microaerophilic	Required but at levels lower than atmospheric	Aerobic respiration	Spirillum volutans (B)	Lake water		
Anaerobes						
Aerotolerant	Not required, and growth no better when O ₂ present	Fermentation	Streptococcus pyogenes (B)	Upper respiratory tract		
Obligate	Harmful or lethal	Fermentation or anaerobic respiration	Methanobacterium (A) formicicum	Sewage sludge digestors, anoxic lake sediments		

^a Letters in parentheses indicate phylogenetic status (B, Bacteria; A, Archaea). Representatives of either domain of prokaryotes are known in each category. Most eukaryotes are obligate aerobes, but facultative aerobes (for example, yeast) and obligate anaerobes (for example, certain protozoa and fungi) are known.

b Listed are typical habitats of the example organism.

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie

a.a. 2011-2012 Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Microorganismi e O₂

L'ossigeno molecolare è un gas che risulta estremamente tossico nei confronti dei sistemi biologici i quali non abbiano sviluppato meccanismi di difesa nei confronti dello stesso.

Bisogna ricordare che l'origine e lo sviluppo delle prime forme di vita sulla Terra è avvenuto in condizioni strettamente anaerobiche. Solo in un secondo momento, con l'avvento della fotosintesi ossigenica, l'atmosfera si è progressivamente arricchita di O_2 . Ciò ha spinto l'evoluzione nel senso di organismi capaci di sopravvivere in presenza di questo gas, con indubbi vantaggi sul piano energetico-metabolico per i medesimi.

Al tempo stesso, lo sfruttamento di questi vantaggi ha richiesto l'adozione di adeguati sistemi di difesa contro gli intermedi (veri responsabili della tossicità, dal momento che ossidano molecole biologiche chiave come i lipidi di membrana!) quali lo ione superossido (O_2^-) , il perossido di idrogeno (H_2O_2) ed il radicale idrossile $(HO \cdot)$ che si formano allorquando $l'O_2$ viene ridotto – nella respirazione aerobica - ad H_2O .

La difesa nei confronti della tossicità legata alla presenza di ossigeno molecolare include meccanismi che limitino il più possibile la produzione delle specie chimiche intermedie oppure eliminino questi intermedi allorché inevitabilmente prodotti.

I microorganismi in grado di fronteggiare la presenza di O₂ devono quindi disporre di sistemi enzimatici quali **a) superossido-dismutasi** che catalizza la seguente reazione:

$$O_2^- + O_2^- + 2H^+ \rightarrow H_2O_2 + O_2$$

e **b)** catalasi e perossidasi che invece catalizzano la reazione seguente:

$$H_2O_2 + H_2O_2 ----> 2H_2O + O_2$$

(la catalasi non richiede NADH, mentre la perossidasi sì)

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie

a.a. 2011-2012 Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

SULLA BASE DELLA RISPOSTA ALLA PRESENZA DI O₂, SI DISTINGUONO TRE CATEGORIE DI MICROORGANISMI

Categoria 1

AEROBI

Usano O₂ e posseggono gli enzimi per detossificare gli intermedi

Categoria 2

ANAEROBI OSSIGENO-TOLLERANTI

Non usano l'O₂ ma sono in grado di detossificare gli intermedi

Categoria 3

ANAEROBI OBBLIGATI

Non usano l'O₂ e sono incapaci di detossificare le specie chimiche intermedie

La diversità metabolica

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 Corso di Microbiologia Generale . Titolare: Prof. Giovanni Vallini

Classificazione dei microorganismi sulla base della richiesta di ossigeno

Categoria 1

A) AEROBI OBBLIGATI muoiono in assenza di ossigeno molecolare (O2); non hanno capacità di metabolismo fermentativo

B) MICROAEROFILI crescono in maniera ottimale a concentrazioni di O2 più basse (5-10 % fino a 15%) rispetto al livello di ossigeno atmosferico (20 -21%)

C) CAPNOFILI crescono in presenza di concentrazioni di O2 ridotte (intorno al 15%) ed elevate concentrazioni di CO₂ (intorno al 5%)

D) ANAEROBI FACOLTATIVI crescono meglio in presenza di ossigeno; se assente, possono fermentare o adottare la respirazione anaerobica: in tali condizioni crescono più lentamente

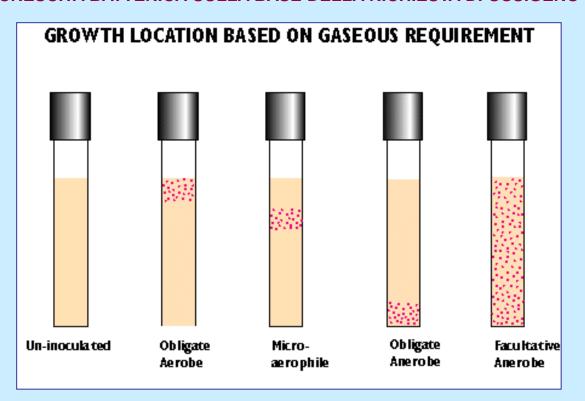
Categoria 2

E) ANAEROBI AEROTOLLERANTI fermentano sia in condizioni aerobiche che anaerobiche: l'O2 non li uccide (es. Streptococcus lactis)

Categoria 3

F) ANAEROBI OBBLIGATI sono uccisi dalla presenza di ossigeno molecolare; possono avere metabolismo fermentativo ovvero adottare la respirazione anaerobica

La diversità metabolica



Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

CRESCITA BATTERICA SULLA BASE DELLA RICHIESTA DI OSSIGENO

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Sistema Gas-Pack per colture microbiche in anaerobiosi

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Anaerobic glove box

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Toxic Forms of Oxygen and Detoxifying Enzymes

$$H_2O_2 + H_2O_2 \rightarrow 2 H_2O + O_2$$

Hydrogen peroxide

$$H_2O_2 + NADH + H^+ \rightarrow 2 H_2O + NAD^+$$

Superoxide

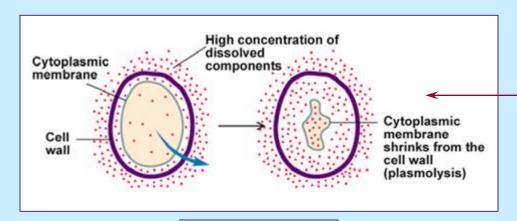
$$O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$$

(d) Superoxide dismutase/catalase in combination:

$$40_2^- + 4H^+ \rightarrow 2H_2O + 30_2$$

(e) Superoxide reductase:

$$O_2^- + 2 H^+ + cyt c_{reduced} \rightarrow H_2O_2 + cyt c_{oxidized}$$

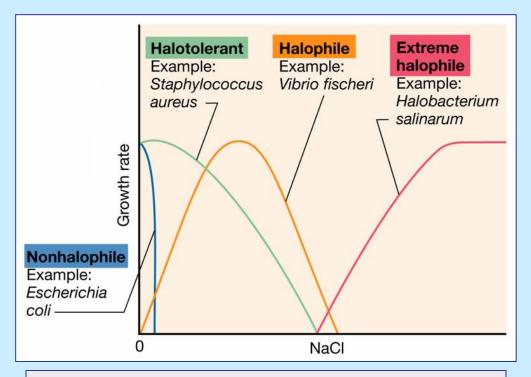


Università degli Studi di Verona - Facoltà di Scienze MM. FF. e NN. Corso di Laurea Triennale in Biotecnologie

a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

BATTERI ED OSMOLARITA'

- Hypotonic
- Isotonic (0.85% NaCl)
 - Hypertonic



FATTORI CHE INFLUENZANO LA CRESCITA

BATTERI E SALINITA' DEL MEZZO DI CRESCITA

Halophiles require elevated salt concentrations to grow; often require 0.2 M ionic strength or greater and may some may grow at 1 M or greater; example, *Halobacterium*.

Osmotolerant (halotolerant) organisms grow over a wide range of salt concentrations or ionic strengths; for example, *Staphylococcus aureus*.

MOISTURE/WATER ACTIVITY

Water activity is a measure of how efficiently the water present can take part in a chemical (physical) reaction. If half the water is so tightly bound to a protein molecule that it could not take part in a hydrolysis reaction the overall water activity would be reduced. Water activity (a_w) is defined as

$$a_w = p/p_o$$

where p and p_o are respectively the partial pressure of water at suface of the matrix of interest and that above pure water under identical environmental conditions respectively (i.e. temperature).

Water activity is sometimes defined as "free", "unbound", or "available water" in a system. The values of $a_{\rm w}$ range from 0.0 (water completely bound) to 1.0 (water completely available).

Equilibrium relative humidity (ERH) describes the amount of water in the air surrounding the matrix of reference when in equilibrium with water in the matrix. It is expressed as follows:

$$\alpha_w = p/p_0 = ERH$$
 (%) / 100 thus, simply RH (%) = 100 x α_w

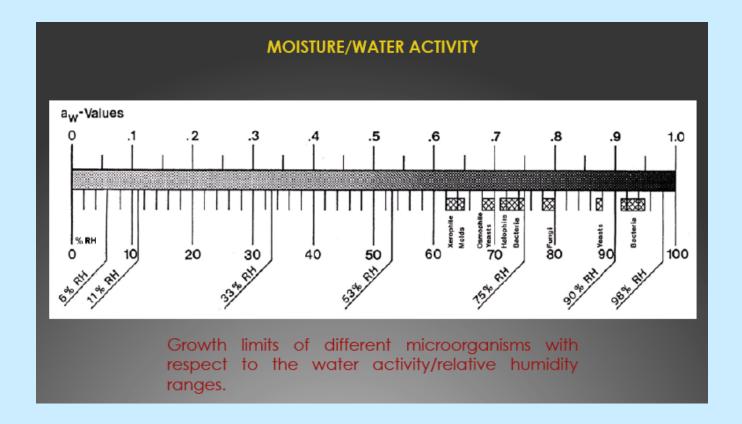
Water activity (a_w) or equilibrium relative humidity (ERH) quantifies the active part of the moisture content or 'free water' as opposed to the total moisture content which also includes 'bound water'.

FATTORI CHE INFLUENZANO LA CRESCITA



FATTORI CHE INFLUENZANO LA CRESCITA

Table 6.2	Water activity of several substances	
Water activity (a_w)	Material	Example organisms ^a
1.000	Pure water	Caulobacter, Spirillum
0.995	Human blood	Streptococcus, Escherichia
0.980	Seawater	Pseudomonas, Vibrio
0.950	Bread	Most gram-positive rods
0.900	Maple syrup, ham	Gram-positive cocci such as Staphylococcus
0.850	Salami	Saccharomyces rouxii (yeast)
0.800	Fruit cake, jams	Saccharomyces bailii, Penicillium (fungus)
0.750	Salt lakes, salted fish	Halobacterium, Halococcus
0.700	Cereals, candy,	Xeromyces bisporus and
	dried fruit	other xerophilic fungi
	mples of prokaryotes or fund d to the stated water activity	gi capable of growth in culture y.



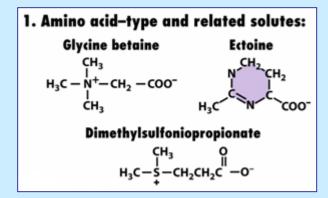
Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

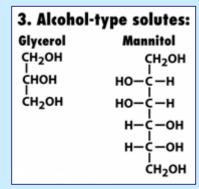
FATTORI CHE INFLUENZANO LA CRESCITA

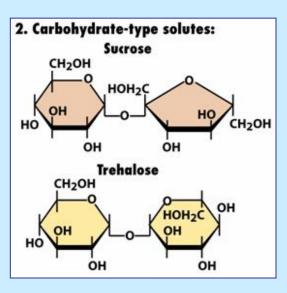
Organism	Major solute(s) accumulated	Minimum a_w for growth
Bacteria, nonphototrophic	Glycine betaine, proline (mainly gram-positive), glutamate (mainly gram-negative)	0.97-0.90
Freshwater cyanobacteria	Sucrose, trehalose	0.98
Marine cyanobacteria	α-Glucosylglycerol	0.92
Marine algae	Mannitol, various glycosides, proline, dimethylsulfoniopropionate	0.92
Salt lake cyanobacteria	Glycine betaine	0.90-0.75
Halophilic anoxygenic phototrophic Bacteria	•	
(Ectothiorhodospira/Halorhodospira and Rhodovibrio species)	Glycine betaine, ectoine, trehalose	0.90-0.75
Extremely halophilic Archaea (for example, Halobacterium)		
and some Bacteria (for example, Haloanaerobium)	KCI	0.75
Dunaliella (halophilic green alga)	Glycerol	0.75
Xerophilic yeasts	Glycerol	0.83-0.62
Xerophilic filamentous fungi	Glycerol	0.72-0.61

La crescita microbica

FATTORI CHE INFLUENZANO LA CRESCITA








FATTORI CHE INFLUENZANO LA CRESCITA

Struttura di alcuni soluti ricorrenti comunemente nei microorganismi

Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

Esempio di mezzo colturale definito (defined medium)

Ingredient	Amount	Ingredient	Amount
Water	1 liter	K ₂ HPO ₄	l g
MgSO ₄ · 7H ₂ O	200 mg	FeSO ₄ ·7H ₂ O	10 mg
CaCl ₂	10 mg	Glucose	5 g
NH ₄ Cl	1 g	Nicotinic acid	0.1 mg

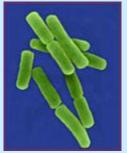
TERRENI DI CRESCITA

Esempio di mezzo colturale sintetico per la crescita di un microorganismo particolarmente esigente (fastidioso)

Bacterium Leuconostoc mesenteroides					
Ingredient	Amount	Ingredient	Amount		
Water	1 liter				
Energy Source					
Glucose	25 g				
Nitrogen Source					
NH ₄ Cl	3 g				
Minerals					
KH ₂ PO ₄	600 mg	FeSO ₄ · 7H ₂ O	10 mg		
K ₂ HPO ₄	600 mg	MnSO ₄ · 4H ₂ O	20 mg		
MgSO ₄ · 7H ₂ O	200 mg	NaCl	10 mg		
Organic Acid					
Sodium acetate	20 g				
Amino Acids					
DL-α-Alanine	200 mg	t-Lysine • HCl	250 mg		
L-Arginine	242 mg	DL-Methionine	100 mg		
L-Asparagine	400 mg	Dt-Phenylalanine	100 mg		
L-Aspartic acid	100 mg	t-Proline	100 mg		
t-Cysteine	50 mg	DL-Serine	50 mg		
t-Glutamic acid	300 mg	DL-Threonine	200 mg		
Glycine	100 mg	DL-Tryptophan	40 mg		
L-Histidine • HCl	62 mg	1-Tyrosine	100 mg		
DL-Isoleucine	250 mg	DL-Valine	250 mg		
DL-Leucine	250 mg	CAN ELIN STAIR			
Purines and Pyrimidin	es				
Adenine sulfate · H ₂ O	10 mg	Uracil	10 mg		
Guanine • HCl • 2H ₂ O	10 mg	Xanthine · HCl	10 mg		
Vitamins	Water Control				
Thiamine · HCl	0.5 mg	Riboflavin	0.5 mg		
Pyridoxine • HCl	1.0 mg	Nicotinic acid	1.0 mg		
Pyridoxamine • HCl	0.3 mg	p-Aminobenzoic			
		acid	0.1 mg		
Pyridoxal • HCl	0.3 mg	Biotin	0.001 mg		
Calcium pantothenate	0.5 mg	Folic acid	0.01 mg		

La crescita microbica

TERRENI DI CRESCITA



TERRENI DI CRESCITA

Esempio di mezzo colturale complesso (rich medium)

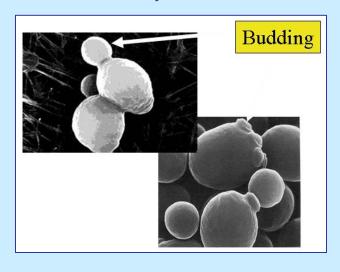
A Complex Medium Suitable for Many Heterotrophic Organisms				
Nutrient Broth Ingredient	Amount			
Water	1 liter			
Pentone	5 g			
Beef extract	3 g			
NaCl	8 g			
Solidified Medium				
Agar	15 g			
Above ingredients in amounts specified	l.			

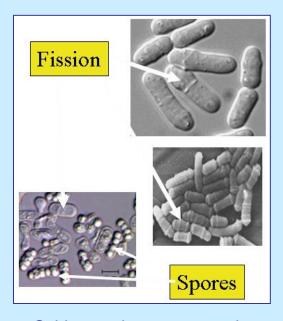
La crescita microbica

TERRENI SELETTIVI E MEZZI DIFFERENZIALI

La crescita microbica

TERRENI DI CRESCITA




Università degli Studi di Verona – Facoltà di Scienze MM. FF. e NN.

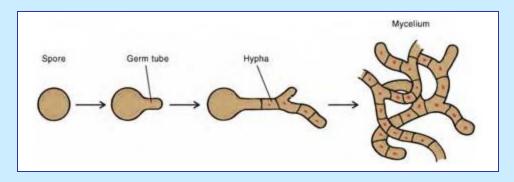
Corso di Laurea Triennale in Biotecnologie
a.a. 2011-2012 • Corso di Microbiologia Generale • Titolare: Prof. Giovanni Vallini

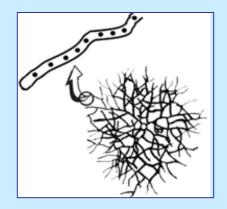
MODALITA' DI REPLICAZIONE NEI LIEVITI

Saccharomyces cerevisiae

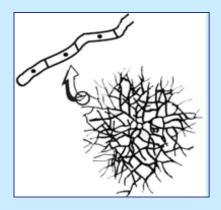
Schizosaccharomyces pmbe

LA CRESCITA FUNGINA





A CRESCITA FUNGINA

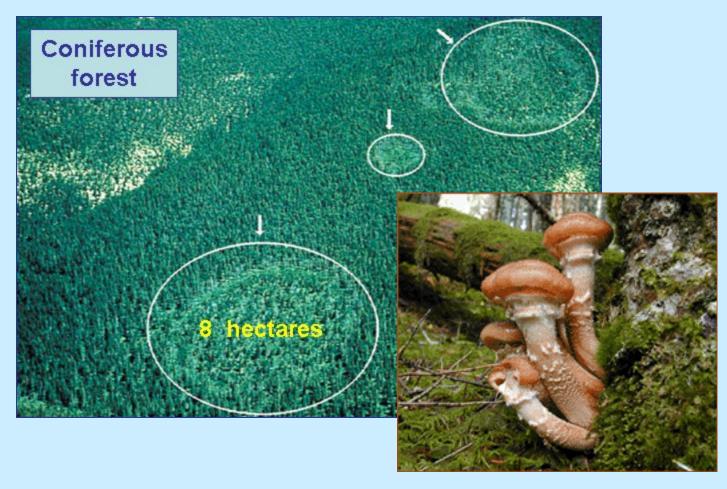

MODALITA' DI CRESCITA DEI FUNGHI FILAMENTOSI

Modalità della crescita vegetativa di un fungo filamentoso

Ife non settate (cenocitiche) (es. *Zigomycota*)

Ife settate

La crescita microbica



CRESCITA FUNGINA INDETERMINATA

Armillaria ostoyae (Malheur National Forest, Oregon, USA)

A CRESCITA FUNGINA