When rRNA is available, the r-proteins associate with it. Translation of mRNA continues.

FIGURE 26.42 Translation of the r-protein operons is autogenously controlled and responds to the level of rRNA.

<u>Stringent</u> response: when bacteria find themselves in such poor growth conditions that they lack a sufficient supply of amino acids to sustain protein synthesis, they shut down a wide range of activities.

FIGURE 26.40 Stringent factor catalyzes the synthesis of pppGpp and ppGpp; ribosomal proteins can dephos-phorylate pppGpp to ppGpp. ppGpp is degraded when it is no longer needed.

Nucleotide levels control initiation of rRNA transcription.

Tubulin is one of several members of a small family of globular proteins. The most common members of the <u>tubulin family</u> are α -tubulin and β tubulin, the proteins that make up <u>microtubules</u>.

Tubulin is assembled into microtubules when it is synthesized. Accumulation of excess free tubulin induces instability in the tubulin mRNA by acting at a site at the start of the reading frame in mRNA or at the corresponding position in the nascent protein.

Regulation of translation

Initiation Factors		Activity
prokaryotes	eukaryotes	
IF3	elF-1	Fidelity of AUG codon recognition
IF1	elF-1A	Facilitate Met-tRNAiMet binding to small subunit
	elF-2	Ternary complex formation
	eIF-2B (GEF)	GTP/GDP exchange during elF-2 recycling
	elF-3 (12 subunits)	Ribosome antiassociation, binding to 40S
<	eIF-4F (4E, 4A, 4G)	nRNA binding to 40S, RNA helicase activity
	elF-4A	ATPase-dependent RNA helicase
	elF-4E	5' cap recognition
	elF-4G	Scaffold for of eIF-4E and -4A
	eIF-4B	Stimulates helicase, binds with eIF-4F
	elF-4H	Similar to eIF4B
	elF-5	Release of eIF-2 and eIF-3, GTPase
IF2	elF5B	Subunit joining
	elF-6	Ribosome subunit antiassociation

elF2

- 3 subunits: α, β, γ
- β subunit helps the GTPase activity and regulates tRNAi-elF2 γ binding
 - α subunit is a translation regulator. It is phosphorylated (ser 51) by different kinases as stress response.

elF4F

Made by 3 subunits

eIF4A: elicase, helped by eIF4B

<u>eIF4E</u>: cap binding protein, regulated by phosphorylation and interaction with eIF4E-BP

<u>elF4G</u>: adaptor, interacts with many factors

elF4F

Regulation of translation

General

lin14 codes for a single protein

lin4 codes for a regulator RNA

No protein

<u>lin-14</u> encodes a protein whose activity is required for specifying the division timings of a specific group of cells during postembryonic development in the nematode *Caenorhabditis elegans*.

dsRNA

- Viral origin
- Hexogen (artificially inserted in cells)

Diagram illustrating the major steps in siRNA biogenesis and subsequent siRNA-mediated gene silencing.

RNA silencing (post-transcriptional gene silencing)

FIGURE 30.13 Long dsRNA inhibits protein synthesis and triggers degradation of all mRNA in mammalian cells, as well as having sequencespecific effects.

Translational control of ferritin synthesis in animal cells

Ferritin is a globular protein complex consisting of 24 protein subunits and is the main *intracellular iron storage protein* in both prokaryotes and eukaryotes, keeping it in a soluble and non-toxic form.

Translational control proof

Nucleus-cytoplasm transport

- Involves RNA and proteins
- It is bidirectional
- Uses the nuclear pore complexes

Direction	Substrate	Passages /pore/min
Import	Histones Nonhistone protein Ribosomal proteins	100 s 100 s 150
Export	Ribosomal subunits mRNA	s ~5 <1

Nuclear pores are used for import and export.

Nuclear pores appear as annular structures by electron microscopy. The bar is 0.5 mm. Photograph kindly provided by Ronald Milligan.

SEM

Vertebrate

Vertebrate

Yeast

А

Size-filtering Diffusion **Spontaneous Migration** protein with small molecule amphiphilic property NPC cytoplasm nucleoplasm conformational change examples: karyopherins, water, ions, β-catenin, small molecules SR-proteins

	Size-filtering diffusion	Spontaneous migration	Karyopherin- mediated transport
Size limitation	+	-	1
Change of surface hydrophobicity	-	+	(-)
Transporter	-	-	+
Transport against concentration gradient	-	-	+
Examples	water, ions, small molecules	karyopherins, β-catenin, SR-proteins	NLS/NES- proteins

В

Nucleus-cytoplasm transport

- **NLS** (nuclear localization sequence) = amino acidic sequence needed for import to nucleus
- **NES** (nuclear export sequence) = amino acidic sequence needed

for export to cytoplasm

SV40 T antigen	Ē	+ ∾	+ Lys	+ Lys	+ Aig	+ Lys	Val
Polyoma T antigen	(1) é	• + ∾ Ly s	+ Lys	АЬ	+ Arg	e Glu	ð As p
Polyoma T antigen	(2) fro val s	+ er Ag	+ Lys	+ Arg	A Pro	+ Arg	A Pro
SV40 VP1		, • Th	+ Lys	+ Arg	+ Lys	ĜĮ	🍅 Se r
Nucleoplasmin	+ + Lys Arg 10 an	n ince oi	ds	+ 4/5	+ Lys	+ Lys	+ Lys

A. Classical Nuclear Localization Signal

 SV40 T antigen:
 ¹²⁶ PKKKRKV ¹³²

 Human c-MYC:
 ³²⁰ PAAKRVKLD ³²⁸

 Nucleoplasm:
 ¹⁵⁵ KR....X₍₁₀₎....KKKK ¹⁷⁰

B. Transport Signals of cargos up-regulated by Phosphorylation

EBNA-1 NLS:	379 KRPRSPSS 386
HBV core:	149 VRRRDRX(17)SPRRRR 180
SV40 T antigen:	¹¹⁰ PSSX ₍₇₎ SX ₍₅₎ PKKKRKV ¹³²
STAT1-dsNLS:	378 RK X(30) KEQKNAGTR X(283) Y 701
ERK5-NLS:	520 KRRRRX(8) KRR 535
ERK1/2-NTS:	232 LDQLNHILGILGSPSQEDL 250

C. Transport Signals of cargos down-regulated by Phosphorylation

Msn2p:	575 SSLRRKSX(34)RRPSYRRKSMTSRRSS 633
NFATc1:	241 RSSRPASPCNKRKYS 641
Pho4-NLS:	140 SANKVTKNKSNSSPYLNKRKGKPGPDS 166
PTHrP-ncNLS:	66 RYLTQETNKVETYKEQPLKTPGKKKKGKP 94
Swi6:	157 ELGSPLKKLKIDT 169

A carrier protein binds to a substrate, moves with it through the nuclear pore, is released on the other side, and must be returned for reuse. There are multiple pathways for nuclear export and import.

