Regulation of Transcription

in Prokaryotes



Trans-acting factors (proteins)

Cis-acting elements (DNA sequences)
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FIGURE 26.1 A regulator gene codes for a protein that
acts at a target site on DNA.
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FIGURE Eﬁ 2 In negative control, a trans-acting repressor
binds to the cis-acting operator to turn off transcription.
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FIGURE 26.3 In positive control, a trans-acting factor
must bind to the cis-acting site in order for RNA poly-
merase to initiate transcription at the promoter.




The Operon

Genes coding for proteins that
function in the same pathway may be
located adjacent to one another and
controlled as a single unit that is

transcribed into a polycistronic
mRNA.
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FIGURE 26.5 The lac operon occupies ~6000 bp of DNA. At the left the lacT gene has its own
promoter and terminator. The end of the facl region is adjacent to the fac7¥A promoter, P.
Its operator, 0, occupies the first 26 bp of the transcn'ption unit. The long lacZ gene starts at
base 39, and is followed by the lacY and facA genes and a terminator.
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Lac Repressor Tetramer

Tetramer binds to operator
and biocks transcription
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FIGURE 26.8 lac repressor maintains the lac operon
in the inactive condition by binding to the opera-
tor. The shape of the repressor is represented as a

series of connected domains as revealed by 1ts crystal
structure.




Lac repressor and RNA polymerase bind at sites that
overlap around the transcription start point of the lac
operon.
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FIGURE 26.9 Addition of inducer converts repressor to
a form with low affinity for the operator. This allows RNA
polymerase to initiate transcription.
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FIGURE 26.23 l[ac repressor binds strongly and
specifically to 1ts operator, but 1t 1s released by inducer.
All equilibrium constants are inM~>.
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FIGURE 26.22 When a repressor tetramer binds to two
operators, the stretch of DNA between them is forced
into a tight toop. (The blue structure in the center of the
looped DNA represents CRP. which is another regulator
protein that binds in this region.) Reproduced from M.
Lewis et al,, Science 271 (1996): 1247-1254 [http://www.
sciencemag.org]. Reprinted with permission from AAAS.
Photo courtesy of Ponzy Lu, University of Pennsylvania.
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FIGURE 26.17 The/acoperator has asymmetr cal sequence. The sequence is numbered
relative to the start point for transcnption at+ 1. The pink arrows to theleft andtothe
r ght identifythe two dyad repeats. The green blocks indicate the positions of identity.
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FIGURE 26.19 Bases that contact the repressor can be identified by chemical
crosslinking or by experiments to see whether modifications prevent binding.
They identify positions on both strands of DNA extending from +1 to +23.
Constitutive mutations occur at8 positions in the operator between + 5 and + 17.
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FIGURE 26.20 Does the inducer bind to the free repres-
sor to upset an equilibrium (left) or directly to repressor

bound at the operator (right)?
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FIGURE 26.24 Virtually all the repressorin the cell 15 bound to DNA.
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FIGURE 26.7 Addition of inducer results in rapid induc-
tion of lac mRNA and is followed after a short lag by
synthesis of the enzymes; removal of inducer is followed
by rapid cessation of synthesis.



Trp (tryptophan) repressor

e Operalor region —————e-
aroH @EEGAATGTACTAGAGAACTAGT

mBRNA

trp  WWARGATCGAACTAGTTAACTAGTACGEA

rpA  WGGMATCGTACTCTTTAGCGAGTACAKNGS

FIGURE 26.31 The trprepressor recogmizes operators at three loci. Conserved bases are shown
in red. The location of the start point and mRN A varnies, as indicated by the black arrows.

trpR also controls the regulation of its own production, through regulation of the
trpR gene
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FIGURE 26.32 Operators may lie at vanous positions
relative to the promoter.



S N N S &Y
b ), 5
DNA 7\ \N \
. - -
) ol Ll

No RNA
made

Active
repressor

Tryptophan
(corepressor)

(b) Tryptophan present, repressor active, operon off

82011 Pearson Education, knc



The arabinose operon by E.coli:
an example of negative-positive control

(b) - Arabinose
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eWhen arabinose is absent, the AraC protein acts as

a negative regulator.

eAraC acts as a dimer, and causes the DNA to loop.
Looping brings the I; and O, sites in proximity to one
another.

eOne AraC monomer binds to I; and a second monomer
binds to O.,.

eBinding of AraC prevents RNA Pol from binding to

the Pgpp promoter



The arabinose operon by E.coli:
an example of negative-positive control
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e\When arabinose is present, it binds to AraC and changes
AraC conformation

eAn arabinose-AraC dimer complex binds preferentially
to I1 and 12, and NOT to O2 which causes ‘opening’

of the loop. This allows RNA Pol to bind to Pgpp.

oIf glucose levels are low, cAMP-CAP complex binds
to Pe..

eActive transcription occurs.



MEGATIVE CONTROL

POSITIVE CONTROL

e, s JED

1 1 AN A polymerase
IS\ FA W AN
z
o
5]
|
2 ®
= @}
H&pf::ssm Inactive Inactive Active
@ repressor activator activa lor
nducer Inuu::f:r
REPRESSED MDUCED REPRESSED INDUCED
= I
Z
o
"
]
i
o e
ina elive I Active Artive inactive
rEEr B 550 L repressor activa lor activator
Corepressos Corepressor
INDUCED REPRESSED INDUCED REPRESSED
|—_ ] 3 |——— ] e

FIGURE 26.4 Regulatory circuits can be designed from all possible combinations of
positive and negative control with inducible and repressible control.
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CAP + cAMP
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FIGURE 26.26 Cyclic AMP has a single phosphate group .!;
connected to both the 3’ and 5 positions ofthe sugarring.
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FIGURE 26.27 By reducing the level of cyclic AMP, glu-
cose inhibits the transcription of operons that require
CRP activity.
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FIGURE 26.25 Asmall-molecule inducer, cAMP, converts
an activator protein CRP to a form that binds the promoter
and assists RNA polymerase in initiating transcription.
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FIGURE 26.28 The consensus sequence for CRP contains
the well conserved pentamer TGTGA and (sometimes) an
inversion of this sequence {TCANA).



Figure 10.24 T@P proteip’can bind at different

sites relative to RNA golymerase.
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