Polarization transfer

• For this diagram, we'll use two protons that are **J**-coupled weakly and have a large δ difference. We name them **I** and **S** to maintain I don't know which convention, and we indicate with a • the excess population from one state to the other:

•Now we irradiate and saturate only one of the lines of one of the nuclei *selectively* (with CW...). After a certain time, the population differences for that transition become equalized.

Polarization transfer. SPT and SPI

• Since we changed the populations of the spin system, the lines in the spectrum change intensity accordingly. What we did is transfer polarization from one nuclei to the other. This is called *selective polarization transfer*, or *SPT*.

• There is one variation of this technique. Think of the following pulse sequence:

- PT SPT and SPI (continued)
- A practical example using ethylcinnamate:

Heteronuclear polarization transfer

• In this case, we call the experiment *selective population inversion*, or *SPI*. Again, the intensities of the lines reflect what we've done to the populations of the spin system.

• Despite that we can use SPT and SPI to identify coupled spin systems in very crowded regions of the spectra, homonuclear PT is not as useful as heteronuclear PT. Lets think of the two experiments in a heteronuclear system:

• Here the population differences between the energy levels reflect that we have a **1** to **4** ratio between ¹³C and ¹H due to the differences in the gyromagnetic rations. Here is were we start seeing why it may be useful...

• One thing that we have wrong in the drawing is the relative intensities. Here we are drawing using only the ratios of the gyromagnetic ratio, not the abundance...

Heteronuclear polarization transfer - SPT

• Now we'll apply SPT and SPI on this spin system, and see what happens. First SPT...

• After we saturate, say, the **1,2** transition we get the following populations in the energy diagram:

• The signals of both spins change accordingly, but now we have a *3-fold* increase for one of the ¹³C transitions. Now we are talking

• If we consider the absolute values of the signal, we have twice as much signal as in the original spectrum...

Heteronuclear polarization transfer - SPI

• Now we do the same analysis for SPI. If we invert selectively the populations of **1**,**2**, we get the following:

negative signals).

J-modulation and polarization transfer

• The increase of the ¹³C signal is good and all that, but we still have to deal with a spectrum that is proton-coupled and has up and down peaks. We cannot decouple to do this, because the enhancement is there due the ¹H levels, which would be gone if we decouple...

• What we do is combine it with *J-modulation*. Consider that we use the following pulse sequence:

• We set t_D to 1 / 2J. This means that after the π / 2 pulse on ¹³C and the t_D , the ¹³C magnetization will have *refocussing* couplings. We'll see it with vectors...

J-modulation and polarization transfer (...)

• We will only consider the ¹³C magnetization, because for the ¹H we only inverted selectively the populations (the chubby π pulse). After the π / 2 ¹³C pulse, we have the +5 and -3 components of the magnetization in the <**xy**> plane:

Selective polarization transfer with hard pulses

• So far, so good. One of the drawbacks of SPI and SPT is that we use selective pulses, which many times are hard to come by. It would be good if we could use hard pulses to do the same thing. The following ¹H pulse sequences do this.

• The first one is selective for ¹H lines that are on-resonance with both π / 2 pulses. Note that the pulses are applied on the same axis:

• The other one will invert the population of a single proton if the pulse is on resonance with the chemical shift of the doublet - It is at the center of the doublet:

• In both cases, $t_D = 1 / 2J_{CH}$. We'll analyze the first one, and the other one will be part of homework or something...

SPT with hard pulses (continued)

• After the π / 2 pulse, both α and β vectors lie in the +x axis:

• If we wait 1 / $2J_{CH}$. seconds, we have that the faster vector (α) moves away from β by π radians. If at this point we apply the second π / 2 pulse, we invert the populations (α and β states will change location).

• This sequence can now be used together with ¹³C excitation to see enhancement of ¹³C nuclei attached to this proton.

Non-selective polarization transfer

• Another big pain of SPT and SPI is that it is selective, and we have to go one proton at a time. It would be nice if we could do all at once, so we transfer polarization from all protons to all the insensitive nuclei attached to them (¹³C or ¹⁵N)One way of doing this is combining the last pulse sequence with a spin-echo with a $t_p = 1 / 4J_{CH}$

• The π pulse and the 2 t_D delays refocus chemical shift, so the populations of all protons in the molecule will be inverted. The π pulse on the X nucleus flips the α and β labels:

• Now the π / 2 will flip the α and β vectors back to the z axis, and we have inversion of the ¹H populations.

Non-selective polarization transfer - INEPT

• If we expand this last sequence a little bit more we get **INEPT** (*Insensitive Nuclei Enhancement by Polarization Transfer*). It is an important pulse sequence building block found throughout multiple pulse sequences.

• It is used to increase the sensitivity (polarization) of nuclei such as ¹³C and ¹⁵N. It looks like this:

• Here **X** is either ¹³C or ¹⁵N. The analysis is the same as what we saw for the protons, plus the 'read' π / **2** pulse for the **X** nuclei to create (and be able to detect) transverse magnetization.

Refocused INEPT

v axis:

• With the regular INEPT we still have the '+5 up' and '-3 down' problem. We would like to have the two lines refocused into a single line, and we already know normal decoupling is not and option.

• We simply combine the INEPT sequence with a refocusing chunk at the end, and detect in the -

• Depending on the type of carbon we use different Δ delays:

- CH Δ = 1 / 4J
- CH₂ Δ = 1 / 8J
- For all types of carbons to have more or less the same enhancement, we use $\Delta\approx 1$ / 7J.

Refocused INEPT (continued)

• After the π / 2 ¹³C pulse, we have the enhanced (+5 & -3) ¹³C magnetization on the **<xy>** plane.

• Variations of this sequence is all over the place. With it we can transfer polarization to and from insensitive nuclei (13 C, 15 N, 29 Si, etc., etc.). We can also use it to *edit* spectra as well as to *label* a certain type of nuclei in the sample with information from others (δ 's, **J**'s).

• The block is used in almost all protein NMR pulse sequences involving ¹H, ¹⁵N, and ¹³C.

INEPT (continued)

- Example of INEPT from ¹H to ²⁹Si.
- Normal ²⁹Si 1D spectrum:

• refocused ²⁹Si INEPT spectum:

• The ${}^{2}J_{1H-29Si}$ coupling is ~7 Hz, and the γ_{1H} / γ_{29Si} ratio is 5.

Heteronuclear correlation - HETCOR

• The COSY (or *Jenner experiment*) was one of the first 2D experiments developed (1971), and is one of the most useful 2D sequences for structural elucidation. There are thousands of variants and improvements (*DQF-COSY*, *E-COSY*, etc.).

• In a similar fashion we can perform a 2D experiment in which we analyze heteronuclear connectivity, that is, which ¹H is connected to which ¹³C. This is called *HETCOR*, for *HETero- nuclear CORrelation spectroscopy*.

• The pulse sequence in this case involves both ¹³C and ¹H, because we have to somehow label the intensities of the ¹³C with what we do to the populations of ¹H. The basic sequence is as follows: **90**

HETCOR (continued)

• We first analyze what happens to the ¹H proton (that is, we'll see how the ¹H populations are affected), and then see how the ¹³C signal is affected. For different t₁ values we have:

HETCOR (...)

• As was the case for COSY, we see that depending on the t_1 time we use, we have a variation of the population inversion of the proton. We can clearly see that the amount of inversion depends on the J_{CH} coupling.

• Although we did it on-resonance for simplicity, we can easily show that it will also depend on the ¹H frequency (δ).

• From what we know from SPI and INEPT, we can tell that the periodic variation on the ¹H population inversion will have the same periodic effect on the polarization transfer to the ¹³C. In this case, the two-spin energy diagram is for ¹H and ¹³C:

• Now, since the intensity of the ¹³C signal that we detect on t_2 is modulated by the frequency of the proton coupled to it, the ¹³C FID will have information on the ¹³C *and* ¹H frequencies.

HETCOR (...)

• Again, the intensity of the ¹³C lines will depend on the ¹H population inversion, thus on ω_{1H} . If we use a stacked plot for different t₁ times, we get:

HETCOR (...)

• Again, Fourier transformation on both time domains gives us the 2D correlation spectrum, in this case as a contour plot:

• The main difference in this case is that the 2D spectrum is not symmetrical, because one axis has ¹³C frequencies and the other ¹H frequencies.

• Pretty cool. Now, we still have the J_{CH} coupling splitting all the signals of the 2D spectrum in little squares. The J_{CH} are in the 50 - 250 Hz range, so we can start having overlap of cross-peaks from different CH spin systems.

• We'll see how we can get rid of them without decoupling (if we decouple we won't see ¹H to ¹³C polarization transfer...).

HETCOR with no J_{CH} coupling

• The idea behind it is pretty much the same stuff we did with the refocused INEPT experiment.

• We use a ¹³C π pulse to refocus ¹H magnetization, and two delays to to maximize polarization transfer from ¹H to ¹³C and to get refocusing of ¹³C vectors before decoupling.

• As in INEPT, the effectiveness of the transfer will depend on the delay Δ and the carbon type. We use an average value.

• We'll analyze the case of a methine (CH) carbon...

HETCOR with no J_{CH} coupling (continued)

• For a certain t₁ value, the ¹H magnetization behavior is:

• Now, if we set Δ_1 to 1 / 2J both ¹H vectors will dephase by by exactly 180 degrees in this period. This is when we have maximum population inversion for this particular t_1 , and no J_{CH} effects:

HETCOR with no J_{CH} coupling (...)

• Now we look at the ¹³C magnetization. After the proton $\pi/2$ we will have the two ¹³C vectors separated in a 5/3 ratio on the <z> axis. After the second delay Δ_2 (set to 1 / 2J) they will refocus and come together:

• We can now decouple ¹H because the ¹³C magnetization is refocused. The 2D spectrum now has no J_{CH} couplings (but it still has the chemical shift information), and we just see a single cross-peak where formed by the two chemical shifts:

Eccito (impulso a 90°) ¹H Acquisisco (t1) ¹H – Perturbo (Trasferisco la magnetizzazione da ¹H a ¹³C utilizzando l'accoppiamento scalare ¹J_{HC} Acquisisco (t2) ¹³C

Sensitivity of NMR spectroscopy

S/N ~ N $\gamma_{exc} \gamma_{det}^{3/2} B_0^{3/2} NS T_2^{1/2}$

S/N	signal-to-noise		
Ν	number of spins	\rightarrow sample concentration	
γ_{exc}	gyromagnetic ratio of excited spins	\rightarrow isotope labeling	
γ det	gyromagnetic ratio of detected spins		
B ₀	static magnetic field	→ magnet "size"	
	(e.g. 14.1 Tesla or 600 MHz for ¹ H)		
NS	number of scans	\rightarrow measurement time	
T ₂	transverse relaxation ~1/(line width)	\rightarrow molecular weight	

Proton detection

Today, most of the heteronuclear experiments are performed in a ¹H detected version, also called "inverse detection" (in contrast to the classical X nucleus detection described so far). If the proper equipment is available (re-wired spectrometer console; inverse detection probe!), then inverse detection offers such an immense gain in sensitivity that there is (almost) no reason to run any "conventional" heteronuclear correlation experiments anymore.

Method	γ exc. γ det. ^{3/2}	¹³ C	15 _N
direct detection	$\gamma_{\rm X}\gamma_{\rm X}^{3/2}$	1.0	1.0
INEPT / DEPT	$\gamma_{H}\gamma_{X}{}^{3/2}$	4.0	9.9
reverse INEPT	$\gamma_X \gamma_H{}^{3/2}$	7.9	31.0
	(relative to INEPT=1)	2.0	3.1
invers	$\gamma_{\mathbf{H}}\gamma_{\mathbf{H}}$	31.6	306.0
	(relative to INEPT=1)	7.9	31.0

Theoretical relative sensitivities (S/N) for H,X correlation spectra (X=¹³C, ¹⁵N)*.

* not taking into account other factors, e.g., T₁, heteronucl. NOE, linewidths etc.

Heteronuclear Single Quantum coherence

E' possibile progettare esperimenti per trasferire la magnetizzazione da un nucleo all'altro anche indipendentemente dall'acquisizione

In questo esperimento il primo spin che viene eccitato è 1H, la magnetizzazione viene trasferita da 1H a 13C PRIMA della acquisizione della
prima dimensione, che quindi è 13C. SOLO i 13C che sono accoppiati ad 1H possono essere osservati!

Successivamente la magnetizzazione e di nuovo trasferita 1H utilizzando sempre l'accoppiamento scalare ed alla fine osservo 1H

Eccito (impulso a 90°) ¹H Trasferisco la magnetizzazione da ¹H a ¹³C utilizzando l'accoppiamento scalare ¹J_{HC}

Acquisisco (t1) ¹³C –

Perturbo -Trasferisco la magnetizzazione da $^{13}\mathrm{C}$ a $^{1}\mathrm{H}$ utilizzando l'accoppiamento scalare $^{1}J_{HC}$

Acquisisco (t2) ¹H

Questo tipo di esperimento si chiama anche **Out and back**

Significa che parto da 1H, trasferisco da 1H a 13C (out), acquisisco 13C nella prima dimensione e poi torno (back) sullo stesso nucleo da cui sono partito

Il doppio trasferimento fa si che l'esperimento sia molto piu' selettivo

Osservo **solo** 1H e 13C che sono accoppiati tra di se per effetto di ¹J

Caratteristiche dell'esperimento HSQC

Non esiste la diagonale

La magnetizzazione viene trasferita da ¹H al ¹³C ad esso accoppiato

Successivamente si acquisisce, nella dimensione indiretta, ¹³C

Infine si ri-trasferisce su ¹H e si osserva ¹H

Tutti gli ¹H che non sono accoppiati a ¹³C NON si osservano