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DNA polymerase €NZYyme COre FIGURE 13.9 Thecystal structure of phage T7 DNA poly-
merase shows that the template strand takes a sharp

turn that exposes it to the incoming nucleotide. Photo
courtesy of Charles Richardson and Thomas Ellenberger,
Washington University School of Medicine.
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E. coli DNA polymerase 111

Heteromultimer composed of more than 10 different subunits
“Processing” enzyme = up to 10° nucleotide streches
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& subunl FIGURE 13.17 The subunit of DNA polymerase III holo-

enzyme consists of a head-to-tail dimer (the two subunits
are shown in red and orange) that forms aring compietely
surrounding a DNA duplex (shown in the center). Reprinted
from Ceil, vol. 69, X. P. Kong, et al., Three-dimensional
structure of the B . . ., pp. 425-437. Copyright 1992,
with permission from Elsevier [http://www.sciencedirect
.com/science/ journal/00928674 ]. Photo courtesyofJohn
Kuriyan, University of California, Berkeley.
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Lagging enzyme starts new fragments

FIGURE 13.15 Areplication complex contains separate catalytic units
for synthesizing the leading and lagging strands.



HOW DOES A PROCESSIVE POLYMERASE
RECYCLE ON OKAZAKI FRAGMENTS?

Leading

DNA polymerase 111 (blue) is
processive because it binds very
ticht to DNA. But on the lagging
strand, it must rapidly recycle to
numerous Okazaki fragments.
How does Pol 111 come off a
completed Okazaki fragment, so
that it can start a new Okazaki
fragment?



Presumably Pol I11 needs a release factor to pry it
off DNA when it finishes, enabling Pol 111 to
recycle to another primed DNA molecule.

Pol 111 core stays bound to beta clamp and DNA
during synthesis, but upon finishing DNA, the Pol
I1I core ejects off the DNA and the beta clamp.




Clamp loader cleaves ATP to load clamp on DNA

Clamp loader

Clamp

£
Core enzyme —[ 8 o

tau + second core joins to gve a symmetric dimer

Lagging strand
synthesis

Leading strand ¢
synthesis

1 subunits maintain
dimeric structure
FIGURE 13.16 DNA polymerase III holoenzyme assembles

In stages, generating an enzyme complex that synthesizes
the DNA of both new strands.



FIGURE 13.18 The helicase creating the repli-
cation fork is connected to two DNA polymerase
catalytic subunits, each of which is held onto
DNA by a sliding clamp. The polymerase that
synthesizes the leading strand moves continu-
ously. The polymerase that synthesizes the lag-
ging strand dissociates at the end of an Okazaki
fragment and then reassociates with a primer in
the single-stranded template loop to synthesize
the next fragment.
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FIGURE 13.19 Each catalytic core of Pol III synthesizes

adaughterstrand. DnaB is responsible for forward move-
ment at the replication fork.



Leading and lagging strands synthesis are coordinated

Replication fork
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1. initiation of 2. Termination of
Okazaki fragment Okazaki fragment
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FIGURE 13.20 Core polymerase and the clamp dissociate at comple-
tion of Okazaki fragment synthesis and reassociate at the beginning.



TN e g L

Primase
synthesizes RNA

T

1 DNA polymerase |l

LT T

extends RNA primer
into Okazaki fragment

- — -~ e

TR LLITR R T ERLLE D FRR LETRILS L

Next Okazaki
fragment is
synthesized

. T v
Dot e
DNA polymerase |

uses nick translation

to replace RN A primer
with DNA

T T T T
LR AL R P

1 Ligase seals the nick

Lo LT TP O g e ORI

FIGURE 13.21 Synthesis of Okazaki fragments require priming, extension,
removal of RNA primer, gap filling, and nick ligation.



DNA ligase activity

3' 5‘

5 3'

3 5
3'

2 _

3 5

5 3'

W W

W W

W W

W W

W W
W W
W W
W W
W W
W W




—0-P-0
OHO
Ernzyme +ATP
or
Erzyme + NAD
Enzyme-AMP
O
Adenine-Ribose-0 -P-0
0
_O'P-O_

ML

FIGURE 13.23 DNA ligase seals nicks between adjacent
nucleotides by employing an enzyme-AMP intermediate.




DNA

polymerase Function Stiucture
High fidelity replicases
o Nuclear replication 350 kD tetramer
3 Lagging strand 250 kD tetramer
€ Leading strand 350 kD tetramer
v Mitochondrial 200 kD dimer
replication

High-fidelity repair

B Base excision repalir 39 kD monomer
Low-fidelity repair

L Base damage bypass heteromer

n Thymine dimer bypass monomer

L Required in meiosis ~ monomer

K Deletion and monomer

base substitution

FIGURE 13.24 Eukaryotic cells have many DNA polymerases.
The replication enzymes operate with high fidelity. Except
for the B enzyme, the repair enzymes al have low fidelity.
Replication enzymes have large stiuctures, with separate
subunits for different activities. Repair enzymes have much
simpler structures.



In Eukaryotes...
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Role of the helicase DnaB during replication of DNA in E. coli
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Helicase DnaB 5'—3' helicase (5'—3°)

S5B single-strand binding protein {(~60/fork)

DnaG primase synthesizes RNA

FIGURE 13.14 Initiation requires several enzymatic
activities, including helicases, single-strand binding
proteins, and synthesis of the primer.



Prokaryotes
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The E. coli origin of replication oriC

LIMIER 1 2 3 4
e
13-mers 9-mers

FIGURE 12.8 The minimal origin is defined by the
distance between the outside members of the 13-mer
and 9-mer repeats.
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Mefting

FIGURE 12.9 A two-state assembly model during initiation. DnaA-ATP monomers inanextended state associate with the
high-affinity 13-mer sequences. DnaA-ATP transitions to a compactstate as the 9-merregion beginsto melt, stabilizing the
single-stranded DNA. Adapted from Journal of Biological Chemistry, vol285, Karl E. Duderstadt, et al., Origin Remodeling
and Opening in Bactena..., pp. 28229-28239. ©® 2010 The American Society for Biochemistry and Molecular Biology.
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Function E. coli Eukaryote Phage T4
Helicase DnaB MCMcomplex 41
Loading helicase/primase  DnaC cdc6 59
Single-strand maintenance SSB RPA 32
Priming DnaG Pola/primase 61
Sliding clamp B PCNA 45
Clamp loading (ATPase) véicomplex RFC 44/62
Catalysis Pof ilf core Pold +Pole 43
Holoenzyme dimerization T s 43
RNAremoval Polf FENT1 43
Ligation [igase Ligase 1 T4 ligase

FIGURE 13.25 Similar functions are required at all replication forks.



Proteins necessary for eukaryotic DNA replication

Protein Function

DNA polymerase o Priming

DNA polymerase o DNA synthesis
PCNA Processivity
Replication factor C Elongation
Replication factor A SSB protein
Topoisomerase | e |l Strands separation
MF1 (FEN I) RNA removal

DNA ligase Nick ligation




Telomeres structure and function



Tandemly repeated sequences in telomeres

ORGANISM DNA ORIGINE 5'-3 REPEATED UNIT

Tetrahymena, Paramecium macronucleus CCCCAA
(Holotrichia ciliates)

Stylonichia, Oxytricha macronucleus CCCCAAAA
(Hipotrichia ciliates)

Trypanosome, Leishmania minichromosomes CCCTA
(Flagellates)

Physarum, Dictyostelium rDNA CCCTA
(Mixamoebae)

Saccharomyces chromosomes CCcACAcaca

Arabidopsis chromosomes CCCTAAA

Homo sapiens chromosomes CCCTAA




Telomeres are located at the end of chromosomes




CCCCAACCCCAACCCCAACCCCAACCCCAACCCCAA
GGGGT TGGGGTIGGGGTTGGGGT TGGGGTTIGGGGTT

1

CCCCAACCCCAACCCCAAYL’
CGGGGTTIGCGGGTTGGGGTTGCGGGTIGGGGTTGGGGT T3’

FIGURE 9.28 A typical telomere has a simple repeating
structure with a G-T-rich strand that extends beyond

the C-A-nch strand. The G-tail is generated by a Limited
deqradation of the C-A-rich strand.



Telomeres shortening during DNA replication
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Binding: RNA template pairs with DNA primer

DNA primer

RNA template

Polymerization: RNA template directs addition
of nucteotides to 3 end of DNA

Polymerization continues
to end of template region

A AL L LARALL L L RAAL,
"

3 | 5
FIGURE 9.33 Telomerase positions itself by base paining
between the RNA template and the protruding single-
stranded DNA primer. It adds G and T bases, one at a
time to the primer, as directed by the template. The cycle
starts again when one repeating unit has been added.
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H/ACA proteins

RTR: human telomerase RNA
H/ACA: family of 4 proteins essential for hTR accumulation
ATERT: human telomerase reverse transcriptase
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Telomerase activity

* Telomerase synthesizes the individual repeats that
are added to the chromosome ends, but does not
itself control the number of repeats.

* Other proteins are involved in determining the length
of the telomere binding the telomerase, and may
influence the length of the telomere by controlling
the access of telomerase to its substrate.

* Telomerase is expressed in actively dividing cells and
is not expressed in quiescent cells.

* Telomerase activity is low in somatic cells: loss of
telomeres results in senescence.

*In Tumor cells there is an high expression and
activity of telomerase > it can be a targhet for
anticancer drugs.



