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Some 59 of the 272 nuclear tRNA genes

in the yeast S. cerevisiae are interrupted.
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FIGURE 21.34 The intron in yeast tRNAPP base pairs
with the anticodon to change the structure of the anti-
codon arm. Pairing between an excluded base in the stem
and the intron loop 1n the precursor may be required

for splicing.
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FIGURE 21.36 The 3’ and 5’ cleavages in S. cerevisige
pre-tRNA are catalyzed by different subunits of the endo-
nuclease. Anothersubunit may determine location of the
cleavage sites by measuring distance from the mature
struciure. The AI base pair is also important.
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FIGURE 21.38 Splicing of tRNA requires separate nuclease and ligase activities. The exon-
intron boundaries are cleaved by the nuclease to generate 2 -3’ cyclic phosphate and 5’-0OH
termini. The cyclic phosphate 1s opened to generate 3'-0OH and 2° phosphate groups. The
5'—0H is phosphorylated. After releasing the intron, the tRNA half molecules fold into a
tRNA-like structure that now has a 3'-0H, 5'-P break. This is sealed by a ligase.
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FIGURE 21.1 RNAismodified in the nucleus by additions to the 5" and 3’ ends and
by splicing to remove the introns. The splicing event requires breakage of the exon-
intron junctions and joining of the ends of the exons. Mature mRNA is transported
through nuclear pores to the cytoplasm, where it is translated.



Splicing signals for major (U2-type or GU-AG) introns

Leit (5') site Branch site Right (3°) site
L
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Splicing signals for minor (U12-type or AU-AC) introns

Left (5') site Branch site Right (3°) site
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Splicing signals for minor (U12-type) introns that are flanked by GU and AG at ends

Leit (&') site Branch site Right (3") site
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FIGURE 21.3 The ends of nuclear introns are defined by the GU-AG rule (shown here as GT-AG in the
DNA sequence of the gene). Minor introns are defined by different consensus sequences at the 5 splice
site, branch site, and 3° splice site.



FIGURE 21.4 Splicing junctions are recognized only in the correct pairwise
combinations.
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1120 FRe1e Il

i
m—>-

mREMNA = 1.1 kb

Primary transcript (5.5 kb

Lacks introns 2 & B

Lacks introns 4,5, 6, & 7

Contains anky intron 3

MRMA (1.1 Khb)

Are introns removed in a specific
order from a particular RNA?
Using RNA blotting, we can
identify nuclear RNAs that
represent intermediates from
which some introns have been
removed. There is a discrete
series of bands, which suggests
that splicing occurs via definite
pathways. (If the seven introns
were removed in an entirely
random order, there would be
more than 300 precursors with
different combinations of introns,
and we should not see discrete
bands.)
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FIGURE 21.5 Splicing occurs in two stages. First the 5’
exon is cleaved off, and then it is joined to the 3" exon.



FIGURE 21.6 Nuclearsplicing occurs by two transesteri-
fication reactions, in which an -OH group attacks a phos-
phodiester bond.



The spliceosome
complex is made by snRNP
and other proteins
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FIGURE 21.7 The spliceosome is ~12 megadal tons (MDa).
Five snRNPs account foralmost half of the mass. The remain- . U5
ing proteins include known splicing factors as well as pro-
teins that are involved in other stages of gene expression.



Domain D

L
> @

Epitope in common with all snRNP proteins

YSolnlolnle

L"h

Domain C

D B
EUCQ omain Ac
A" “Geaus" Sacu” Ceecuc B vace
-LGUwCCUAU e, GG @G"GA ¢ gGACGGUCCAU U CAU ApppGme 5'
CG 5'ExonGUAAGU A Intron 3°
UG
UA
UG
A
i
GC
G
a .UG
A A
o W
GeaC
Domain A

FIGURE 21.8 U1l snRNA has a base-paired structure that creates several
domains. The 5" end remains single stranded and can base pair with the 5’
splice site.

The Sm proteins were first
discovered as antigens targeted by
so called Anti-Sm antibodies in a
patient with a form of systemic
lupus erythematosus (SLE), a
debilitating autoimmune disease.
They were named Sm proteins in
honor of this patient, Stephanie
Smith.
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FIGURE 21.9 Mutations that abolish function of the 5°
splice site can be suppressed by compensating mutations
in U1 snRNA that restore base pairing.
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FIGURE 21.10 The commitment (E) complex forms by the successive addition of U1 snRNP to the 5°
splice site, U2AF to the pyrimidine tract/3’ splice site, and the bridging protein SF1/BBP.



U2 snRNA pairs at the branch point
at the 3’ end of the intron
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FIGURE 21.12 The splicing reaction proceeds through discrete stagesin which spliceosome
formation involves the interaction of components that recognize the consensus sequences.

Formation of commitment
complex in which U1 is base paired
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The first step of transesterification
5! splice site cleaved, lanat formed

C1 complex
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C2 complex The second step of transesterification

3’ splice site cleaved, exons ligated
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FIGURE 21.13 U6/U4 pain'ng is incompatible with U6 /U2 pairing.
When U6 joins the spliceosome it is paired with U4. Release of U4
allows a conformational change in U6; one part of the released
sequence forms a hairpin and the other part pairs with U2. An
adjacent region of U2 is already paired with the branch site, which
brings U6 into juxtaposition with the branch. Note that the sub-
strate RNA is reversed from the usual orientation and is shown 3’

1057

.
-
U2
.

A ERL Ll y
R 3 =Yoo | 5F

9’ (left) splice site



5’ splice site
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FIGURE 21.14 Splicing utilizes a series of base-pairing
reactions between snRNAs and splice sites.
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FIGURE 21.19 An REF protein (shown in green) binds to a
FIGURE 21.18 The exon junction complex (EJC) is depos- splicing factor and remains with the spliced RNA product.
ited near the splice junction as a consequence of the REF binds to a transport protein (shown in purple) that
splicing reaction. binds to the nuclear pore.



Alternative splicing

* Alternative splicing contributes to structural
and functional diversity of gene products
starting from a single pre-mRNA.

 It’s controlled by a series of Alternative
Splicing Factor (ASF/SF2) selecting the proper
splicing junctions in order to obtain the variant
you want.
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FIGURE 21.21 Different modes of alternative splicing.



Trans-Splicing

Normal splicing occurs onlyin Gs
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FIGURE 21.26 Splicing usually occurs onlyin cis between
exons carned on the same physical RNA molecule, but
trans-splicing can occur when special constructs that sup-
port base pairing between introns are made.



Trans-Splicing = exceedingly rare event in vivo

Es. RNA SL (Spliced Leader) in Tripanosoma and worms = a
short sequence (SL RNA) is spliced to the 5 ' ends of many

precursor MRNAS. Tandem repeats Individual
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FIGURE 21.27 The SL RNA provides an exon that is con- *—*_-- AG =

nected to the first exon of an mRNA by trans-splicing.
The reaction involves the same interactions as nuclear cis- 1
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splicing but generates a Y-shaped RNA instead of a lanat. U baer TR Den
leader



