Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
1st Semester Oct 1, 2009 Jan 31, 2010
2nd Semester Mar 1, 2010 Jun 15, 2010
Exam sessions
Session From To
Sessione straordinaria Feb 1, 2010 Feb 28, 2010
Sessione estiva Jun 16, 2010 Jul 31, 2010
Sessione autunnale Sep 1, 2010 Sep 30, 2010
Degree sessions
Session From To
Sessione autunnale Oct 14, 2009 Oct 14, 2009
Sessione straordinaria Dec 16, 2009 Dec 16, 2009
Sessione invernale Mar 10, 2010 Mar 10, 2010
Sessione estiva Jul 21, 2010 Jul 21, 2010
Holidays
Period From To
Festa di Ognissanti Nov 1, 2009 Nov 1, 2009
Festa dell'Immacolata Concezione Dec 8, 2009 Dec 8, 2009
Vacanze Natalizie Dec 21, 2009 Jan 6, 2010
Vacanze Pasquali Apr 2, 2010 Apr 6, 2010
Festa della Liberazione Apr 25, 2010 Apr 25, 2010
Festa del Lavoro May 1, 2010 May 1, 2010
Festa del Santo Patrono May 21, 2010 May 21, 2010
Festa della Repubblica Jun 2, 2010 Jun 2, 2010
Vacanze Estive Aug 9, 2010 Aug 15, 2010

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D F G M N P R S V Z

Assfalg Michael

symbol email michael.assfalg@univr.it symbol phone-number +39 045 802 7949

Astegno Alessandra

symbol email alessandra.astegno@univr.it symbol phone-number 045802 7955

Ballottari Matteo

symbol email matteo.ballottari@univr.it symbol phone-number 045 802 7823

Bassi Roberto

symbol email roberto.bassi@univr.it symbol phone-number 045 8027916

Bellin Gianluigi

symbol email gianluigi.bellin@univr.it symbol phone-number +39 045 802 7969

Bettinelli Marco Giovanni

symbol email marco.bettinelli@univr.it symbol phone-number 045 802 7902

Buffelli Mario Rosario

symbol email mario.buffelli@univr.it symbol phone-number +39 0458027268

Calabria Elisa

symbol email elisa.calabria@univr.it symbol phone-number +39 045 842 5146

Capiluppi Marta

symbol email marta.capiluppi@univr.it symbol phone-number +39 045 802 7049
foto,  March 16, 2015

Cecchi Franco

symbol email franco.cecchi@univr.it symbol phone-number 045 802 7964 - 7965

Crimi Massimo

symbol email massimo.crimi@univr.it symbol phone-number 045 802 7924; Lab: 045 802 7050

Delledonne Massimo

symbol email massimo.delledonne@univr.it symbol phone-number 045 802 7962; Lab: 045 802 7058

Di Palma Federico

symbol email federico.dipalma@univr.it symbol phone-number +39 045 8027074

Dominici Paola

symbol email paola.dominici@univr.it symbol phone-number 045 802 7966; Lab: 045 802 7956-7086

Drago Nicola

symbol email nicola.drago@univr.it symbol phone-number 045 802 7081

Furini Antonella

symbol email antonella.furini@univr.it symbol phone-number 045 802 7950; Lab: 045 802 7043
GnaccariniClaudio

Gnaccarini Claudio

symbol email claudio.gnaccarini@univr.it

Gobbi Bruno

symbol email bruno.gobbi@univr.it

Macedonio Damiano

symbol email damiano.macedonio@univr.it symbol phone-number 045-802.7079
MarastoniCorrado

Marastoni Corrado

symbol email maraston@math.unipd.it

Marzola Pasquina

symbol email pasquina.marzola@univr.it symbol phone-number 045 802 7816 (ufficio); 045 802 7614 (laboratorio)
Foto Mazzi,  October 21, 2010

Mazzi Ulderico

symbol email ulderico.mazzi@univr.it
MinelliIda Germana

Minelli Ida Germana

Molesini Barbara

symbol email barbara.molesini@univr.it symbol phone-number 045 802 7550

Molinari Henriette

symbol email henriette.molinari@univr.it symbol phone-number 045 802 7901; Lab: 045 802 7906
Foto,  April 9, 2014

Monaco Ugo Luigi

symbol email hugo.monaco@univr.it symbol phone-number 045 802 7903; Lab: 045 802 7907 - 045 802 7082
NodariLuca

Nodari Luca

symbol phone-number 045 802 7943

Perduca Massimiliano

symbol email massimiliano.perduca@univr.it symbol phone-number +39 045 8027984

Romeo Alessandro

symbol email alessandro.romeo@univr.it symbol phone-number +39 045 802 7936; Lab: +39 045 802 7808
SpenaAngelo

Spena Angelo

symbol email angelo.spena@univr.it symbol phone-number 045 683 5623
Foto personale,  July 18, 2012

Vallini Giovanni

symbol email giovanni.vallini@univr.it symbol phone-number 045 802 7098; studio dottorandi: 045 802 7095

Zorzan Simone

symbol email simone.zorzan@univr.it symbol phone-number +39 0458027644

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2010/2011

ModulesCreditsTAFSSD
6
B
BIO/18

3° Year  activated in the A.Y. 2011/2012

ModulesCreditsTAFSSD
6
A
FIS/07
12
C
BIO/04 ,BIO/09
Prova finale
3
E
-
activated in the A.Y. 2010/2011
ModulesCreditsTAFSSD
6
B
BIO/18
activated in the A.Y. 2011/2012
ModulesCreditsTAFSSD
6
A
FIS/07
12
C
BIO/04 ,BIO/09
Prova finale
3
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00800

Credits

12

Language

Italian

Scientific Disciplinary Sector (SSD)

BIO/11 - MOLECULAR BIOLOGY

The teaching is organized as follows:

Teoria

Credits

9

Period

II semestre

Academic staff

Massimiliano Perduca

Laboratorio

Credits

3

Period

II semestre

Academic staff

Barbara Molesini

Learning outcomes

The aim of this course is to give the students the basic knowledge of the molecular mechanisms concerning transmission, variation and expression of the genetic information.

Program

Theory:
-> Genetic information and informational molecules
General introduction and historical hints. The chemical structure of DNA and RNA. Three dimensional structure of DNA. Physico-chemical properties of DNA.
-> Molecular Biology techniques
Agarose gel electrophoresis. Nucleic acid hybridization. Polymerase chain reaction (PCR). Restriction endonucleases. Cloning and sub-cloning. gene expression systems.
-> DNA, RNA and gene structure
Definition of gene coding and regulatory regions. From genes to proteins; messenger RNA, transfer RNA and ribosomal RNA.
-> Genome organization and evolution
DNA content and number of genes. Mutations, DNA rearrangement and genome evolution. The organelle genomes. Interrupted genes; introns. cDNA. Gene families and duplication. DNA repeats.
-> Transposable elements
Transposition mechanisms and control. Retroviruses and retrotransposones. Transposons.
-> Chromatin and chromosomes
Nucleosomes, histones and their modifications. Higher organization levels of chromatin. Heterochromatin and euchromatin. Eukaryotic chromosomes, telomeres and centromeres.
-> DNA replication
DNA polymerases. Proofreading activity of DNA polymerases. Replication mechanism in bacteria and eukaryotic cells.
-> Introns and RNA splicing
Features of spliceosomal introns. Spliceosome and splicing mechanism. Alternative splicing and trans-splicing. Other kinds of introns: group I and group II introns and tRNA introns. The intron movement. RNA editing. Ribozymes and riboswitch.
-> DNA mutation and repair
Spontaneous mutations and mutations caused by physical and chemical mutagens. Pre- and post-replicative repair systems. Recombination in the immunity system cells. Approaches to homologous recombination.
-> Regulation of gene expression
Bacterial promoters. The operon. Activators, repressors and coactivators. Signal transductions and two component regulation systems. Eukaryotic promoters. Activators, repressors and coactivators. Gene expression and chromatin modifications. Epigenetic mechanisms.
-> RNAs and transcription
Different types of RNA: synthesis and maturation. Bacterial RNA polymerase. Sigma factors. Eukaryotic RNA polymerases. Eukaryotic mRNAs: capping, polyadenylation, cytoplasmic localization. The transcription process in bacteria and in eukaryotic cells.
-> Translation
Ribosomes. tRNA structure and function. Aminoacyl-tRNA synthesis. Initiation in bacteria and eukaryotic cells. Polypeptide chain synthesis and translation end. Regulation of translation.
-> Protein localization.

One credit of the course (corresponding to 8 hours) will be kept for the students to discuss an important topic chosen from the research literature in Molecular Biology.

Introduction to the Laboratory Course:
-> Nucleic acids isolation: basis, comparison of several extraction protocols, nucleic acids isolation troubleshooting.
-> Nucleic acids electrophoresis: agarose gels, polyacrylamide gels, denaturing and non-denaturing gels, Pulsed-field gel electrophoresis.
-> Spectrophotometric quantitation of isolated nucleic acids.
-> PCR
1.What is PCR?
2. Reagents: efficiency, specificity, fidelity
3. PCR cycle. Final number of copies of the target sequence
4.Amplifying the correct product: detection and analysis of PCR products, how to avoid contamination (uracil N-glycosylase, UV, enzymatic treatment), hot start, nested PCR
5. Techniques and applications: 5’RACE-PCR and 3’RACE-PCR, RT-PCR, PCR mutagenesis (deletion of sequences, base substitutions, insertion mutagenesis), modification of PCR products (introduction of restriction sites, adding promoters and ribosome-binding sites), joining overlapping PCR products, quantitative PCR

Experiments:
-> Genomic DNA extraction from different plant tissues. Amplification by PCR of selected genes and visualization of PCR products on agarose gels.
-> Total RNA extraction from prokaryotes (bacteria) and eukaryotes (plants), spectrophotometric quantitation, denaturing gels. Synthesis of cDNA and visualization of cDNA population on gel. 5’ RACE-PCR and 3’ RACE-PCR.

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Teoria WATSON James D , BAKER Tania A , BELL Stephen P , GANN Alexander , LEVINE Michael , LOSICK Richard Biologia molecolare del gene (Edizione 7) Zanichelli 2015 978-88-08-36480-7
Teoria LEWIN Benjamin Il Gene VIII Zanichelli 2006 978-8808-17902-9
Teoria Harvey Lodish, Chris A. Kaiser, Anthony Bretscher, Angelika Amon, Arnold Berk, Monty Krieger, Hidde Ploegh and Matthew P. Scott Molecular Cell Biology (Edizione 7) Freeman 2012 1464102325
Teoria Alberts et al. The Cell (Edizione 5) Garland Science 2007 978-0-8153-4105-5

Examination Methods

Oral examination.
An individual final report, concerning the Laboratory Course, must be prepared and positively evaluated before taking the final oral examination.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
 


Career management


Student login and resources


Erasmus+ and other experiences abroad